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Abstract

The spatial information for the values of basic geological parameter (copper grade) from 
the different exploration and exploitation stages of porphyry copper deposit has been used 
in the investigation. Neural networks have been trained with different density of training 
data for some production levels. The train and test errors of forecast model – neural 
network have been analyzed. Their values can be used for training information density 
evaluation with the purpose of risk reduction in geological parameter prognostication. The 
obtained results give us possibilities of train data optimal density determination.
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1 Neural networks as a modeling instrument

Recently neural networks as a product of artificial intelligence are used increasingly to 
solve various application problems such as pattern recognition, classification and 
clustering, forecasting etc. They find application in various fields of investigation. Geology 
exploration and mining are characterized by highly nonlinear structures and probabilistic 
nature, which makes difficult their formalized description. For this reason, neural networks 
are suitable for analysis of geological data, for models building, which correctly support the 
engineering problems solutions.
Different types of neural networks and ways of training depending on the solved problems 
with their help have been developed. In (Topalov and Hristov, 2007) and (Topalov and 
Hristov, 2008) multilayer perceptron has been shown as suitable neural network for 
prediction of geologic parameter and study its changeability. The module Neural Networks 
from STATISTICA 7 of StatSoft Inc. in particular sub-module Intelligent Problem Solver 
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(IPS), was used in this study. IPS allows training and evaluation of different types of neural 
network architectures, with different parameters. It trains and tests many different neural 
networks by same training and testing data simultaneously and then ranks them according 
to their quality. This facilitates discovering of the appropriate class of models and some of 
their parameters.

2 Object of Investigation

The porphyry copper deposit “Elatzite” is situated in Etropole’s part of Balkan mountain. It
was discovered in 1952 (Milev et al., 2007). Its detailed exploration have been performed 
by boreholes and drive prospect workings during the period of years 1952 – 1968. The 
exploration grid has different density – from 100×100 m, at intervals of 50×100 m till to 
71×71 m (152 drill holes and 4115 m drive prospect workings).
The ore body of the deposit is an ore stock and has not well-defined contacts. The central 
part of the deposit is most strongly mineralized which decrease to the periphery up to 
barren rocks. The horizontal sections of the irregular ore body shape are elliptical with next 
size 1400×850 m. The vertical size of mineralization is nearly 870 m. In the ore are fixed 
61 minerals generally. 48 of them are ore minerals and the others are non-metallic minerals. 
The main ore minerals are chalcopyrite, pyrite, bornite and molybdenite.
The main useful component – copper grade has been studied sufficiently in details. Its 
distribution has been revealed by detailed exploration and exploitational exploration 
samples, especially by purposeful mineralogical and statistical investigations for the 
regularities clarifying from research team led by July Todorov (Milev et al., 2007).
Now, during the mining process exploitational exploration is realized by systematic blast 
hole sampling. The samples are located in grid approximately 14×14 m. Mining method is 
opencast mining. Most of the extracting levels are already worked-out. All the information 
about copper grade from these levels is available.

3 Optimum density of neural network training data determination

The study is focused on six fully or partially operating extracting levels for which basic 
geological parameter data are available - the copper grade from all stages of the deposit 
exploration. The high density of the available information allows to be determined by 
diluting such data quantity that provides reliable neural network training, and effective 
forecasting.
Dilution is realized by defining regular grid nodes by analogy with the detailed exploration.
Different variants on a regular network with different distances between nodes were 
formed. The data from the exploitation stage of sampling (Figure 1a) are not organized in 
regular grid by technological reasons. This requires a special approach for the geological 
parameter determination in the nodes of a regular grid (Figure 1b). The exploitation 
sampling information falling within a circle with certain radius around each node of regular 
grid was used. Those samples within the circle have different impacts on the geological 
parameter value in the grid node. Weighted average is used, as a rule the weight of each 
sample depends on the distance to the knot. The Visual Basic for Application of MS Excel 
program was created for the purpose. It can calculate the nodes value from exploitation 
samples for the chosen extracting level by specified circle radius and grid lag. The program 
allows to the user to enter the radius and lag value.
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grid lag is equal to 30 m

Figure 1. Extracting level 1015 – samples situation

The number of variants of that dilution is deliberately increased as the lag of regular grid 
varies from 10 up to 70 meters with step of 10 meters and the radius is chosen to be equal 
to the specified lag. The data from the detailed exploration stage (DES) are included as an 
individual variant. Thus, this produces a different number of nodes in different variants
(Table 1). Figure 2 illustrates the number grid nodes change depending on the assumed 
regular grid lag. The determined geological parameter values in these grid nodes are used 
for neural networks training.

Table 1. Regular grid node numbers by extract levels

Lag 10 20 30 40 50 60 70 DES
Level 1015 1878 512 243 147 100 70 58 140
Level 1000 1705 466 219 134 88 66 48 136
Level 985 1341 371 178 107 72 58 41 135
Level 970 1193 332 158 97 70 48 37 134
Level 955 824 229 116 72 46 37 28 135
Level 940 482 142 72 44 29 22 18 131
Average 1237 342 164 100 68 50 38 135
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Figure 2. Regular grid node numbers by extract levels

Different types of neural networks – multilayer perceptrons have been trained by IPS for 
each regular grid node variant. They have been tested on all available exploitation sampling 
data from  the corresponding extract level. The best network from the IPS ranked networks 
was chosen by lowest test error criterion. These are four layers perceptrons with two hidden 
layers. The input layer has two nodes - the sample (node) coordinates, output layer has one 
node - the sample copper grade value. The results in our earlier studies show that the small 
number of nodes in each inner layer does not provide better accuracy due to model 
globalization. On the other hand a very large number of nodes lead to network re-training 
and testing error increasing. In this study the number of nodes in the inner layers has been 
limited between 6 and 9. Table 2 presents the test errors of all the best-trained neural 
networks for six extract levels for all versions of dilution.

Table 2. Test errors of the best trained neural networks

Lag 10 20 30 40 50 60 70 DES
Level 1015 0.076 0.088 0.086 0.100 0.109 0.120 0.148 0.095
Level 1000 0.058 0.110 0.062 0.131 0.158 0.176 0.187 0.106
Level 985 0.037 0.036 0.041 0.064 0.178 0.182 0.249 0.144
Level 970 0.049 0.047 0.090 0.139 0.107 0.215 0.208 0.063
Level 955 0.074 0.082 0.119 0.140 0.212 0.142 0.270 0.137
Level 940 0.071 0.110 0.174 0.234 0.178 0.292 0.186 0.132
Average 0.061 0.079 0.095 0.135 0.157 0.188 0.208 0.113
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Figure 3 Train and test errors of the best neural networks by extract levels

Figure 3 shows the errors in the training and testing of the best networks for different 
extract levels. There can not be seen clear regularity. May be noted that when training on 
data with less density, neural networks achieve a small train error, but while testing them –
these networks provide bigger errors. For purposes of the forecasting, test errors are 
determinative for prediction accuracy because they are set on the maximum density of 
information - data from exploitation exploration. Figure 3b shows the test error average by 
extract levels (dash line). These average errors are closest to errors in testing at a density of 
30 and 40 m (highest values of correlation coefficient - 0.84), but errors in density 30 m are 
almost everywhere smaller than average. On the other side of Table 1 and Figure 1 show
that the number of nodes of regular grid with lag up to 30m is relatively small, while for 
networks with higher nodes density their number sharply increase - repeatedly. 
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Figure 4. Train and test error behavior in case of different training data density

Figure 4 shows graphs of error average and their variance from all extract levels in the 
training and testing process according to the regular grid lags (the density of training data).
The error values of the initial point 0 in the graphs are those of trained neural networks with 
training data from detailed exploration. These graphs confirm that neural networks are 
trained with smaller error in reducing the density of data (Figure 4a), but they give greater 
error in testing (Figure 4b). It can be seen from the two graphs that the errors variance is 
comparatively invariable, i.e. does not depend on the density of training data. This can be 
considered as a symptom of some stability achieved in the quality of training of neural 
networks in different extract levels regardless of the lag value.
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Figure 5. The relationship between the average test errors and the average number of 
regular grid nodes

It is necessary to find the optimum value of the ratio between test error and train sample 
number (their density. Figure 5 shows the relationship between the average test errors (last 
row of Table 2) and the average number of regular grid nodes (the last row of Table 1). It 
can be seen that the test error increases sharply at low density of training data. Breaking 
point on the graph corresponds to the density of training data from 30 x 30 m. This 
confirms the comments of Figure 3b.

4 Conclusions

Some results from previous investigations (Hristov and Topalov, 2009), (Topalov and 
Hristov, 2007) and (Topalov and Hristov, 2008) demonstrate convincingly the ability to 
detect geological parameter - copper grade changeability and its prediction using neural 
networks. As we know the number, uniformity and density of training data significantly 
affect the quality of training. On the other hand provide a very large number of samples are 
associated with significant costs. It is therefore necessary to find the optimal ratio between 
the number of training data (samples) and quality of training of the network, i.e. forecast 
quality. That is the reason to use in the investigation all available information about the 
basic geological parameter provided at all exploration stages of the ore deposit. Present
studies have focused on six consecutive full and/or partially mined levels. The following 
results were achieved:
1. The Visual Basic for Application of MS Excel program has been developed, which 
extract from spatial sampling data the values of geological parameter in regular grid with 
different density, which can be user defined.
2. By this program have been formed 42 regular networks - 7 of every level
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3. Many neural networks have been trained on these regularly arranged data and the best 
one has been selected by minimal test error criterion of exploitation data sampling.
4. The optimal density of training data - 30 х 30 m is determined on the basis of achieved 
results.
The obtained results allow increasing the training quality of neural network with not so 
many data and can be used for prediction at non mined areas and deeper extract levels. 
There is no need to crowd together sampling adopted in the case of a grid of 14 x 14 m.
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