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Abstract

This paper presents general dispersive hybrid implicit-explicit finite differ-
ence time domain (HIE-FDTD) formulations for the simulation of nanoma-
terials, like Graphene. In the presented formulations, the material dispersion
is modeled by a generalized dispersive model (GDM) that allows the descrip-
tion of wide range of dispersive media. The validity of the formulations is
demonstrated by studying the surface plasmon polaritons (SPPs) waves in
graphene nanomaterial.
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1. Introduction

In recent years, Graphene [?], which is considered to be one-atom two-
dimensional (2-D) material, has recently attracted tremendous interest due
to its unique electrical and mechanical properties [?]. This increases the
interest in developing accurate and efficient numerical models to simulate
graphene. In the last decade, considerable attention has been devoted for
incorporating the hybrid implicit-explicit finite difference time domain (HIE-
FDTD) technique [?] into the simulation of electromagnetic wave propagation
in nanomaterials, such as graphene [?]-[?]. The advantage of this technique
is that the temporal discretization is not confined by the structure smallest
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space cell size and, therefore, it increases the time step size considerable as
compared with the classical explicit FDTD approach.

This paper presents general dispersive HIE-FDTD formulations for the
simulation of nanomaterial. In the presented formulations, the material dis-
persion is described by a generalized dispersive model (GDM) [?], which
allows the description of wide range of dispersive models, like Debye, for bi-
ological tissu in the MHz regime, Drude and Drude-Lorentz, for transition
metals in the THz regime, and Sellmeier’s law, for glass in the THz regime.
The validity of the formulations is demonstrated by studying the surface
plasmon polaritons (SPPs) waves in graphene nanomaterial.

2. Formulations

Considering a linear, isotropic and electrically dispersive medium, the
frequency-domain Maxwell’s curl equations can be written as

∇× Ẽ = −jωµ0H̃ (1)

∇× H̃ = jωε0ε∞Ẽ+ jωε0χ (ω) Ẽ (2)

where ε∞ is the permitivity at infinite frequency and χ (ω) is the electric sus-
ceptibility, which can be expressed in a generalized [1/2] Pade approximant
as [?]

χ (ω) =
jωe1 + e0

(jω)2 + jωf1 + f0
(3)

where e1, e0, f1, and f0 are constants. This generalized model unifies the
common dispersive models in a single formulation. Substituting (3) into (2),
and re-arranging the term jω (ω) as

jωχ (ω) = e1 +
(e0 − e1f1)−

e1f0
jω

jω + f1 +
f0
jω

(4)
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the following time-domain equations describing the propagation of electro-
magnetic waves in a generalized dispersive medium can be obtained

−µ0

∂H

∂t
= ∇× E (5)

ε0ε∞
∂E

∂t
= ∇×H− ε0e1E− ε0J (6)

∂J

∂t
= (e0 − e1f1)E− f1J− f0P (7)

∂P

∂t
= e1E+ J (8)

Assuming that the nanomaterial sheet is located in the x − z plane, and
applying the standard HIE-FDTD implementation [?], the curl equations of
(5) and (6) can be written in the discrete time domain as

δt
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2
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z (14)

where the field’s spatial indices are not shown for the sake of brevity, Gn =
G (n∆t), (G = E, H, J), δη, (η = x, y, z), is the central difference operator
with respect the coordinate η defined as

δηu
n =

un(η + ∆η

2
, · · · )− un(η − ∆η

2
, · · · )

∆η
(15)

where ∆η is the space cell size in the η-direction, and δt, and µt are, respec-
tively, the center difference and the central average operators with respect to

3



time defined as

δtu
n = un+ 1

2 − un− 1

2 (16)

µtu
n =

un+ 1

2 + un− 1

2

2
(17)

and finally, the J and P auxiliary variables are incorporated into the HIE-
FDTD algorithm by discretizing (7) and (8) using a central difference and
average operators approximated over one time step as

δt
∆t

Jn+ 1

2 = (e0 − e1f1)µtE
n+ 1

2 − f1µtJ
n+ 1

2 − f0µtP
n+ 1

2 (18)

δt
∆t

Pn+ 1

2 = e1µtE
n+ 1

2 + µtJ
n+ 1

2 (19)

The advantage of the above formulations is that (18) and (19) can be used for
implementing different models by setting the e and f coefficients accordingly.
Consider, for example, the one-atom graphene material with thickness d and
with an electric susceptibility expressed in the 1-10 THz frequency range as
[?]

χ (ω) =
σ0/dε0

jω(1 + jωτ)
(20)

where σ0 = e2τkBT
(

µc

kBT
+ 2 ln

(
e−µc/kBT + 1

))
/πh̄2, τ is the scattering

time, µc is the chemical potential, T is the temperature, −e is the elec-
tron charge, h̄ is the reduced Planck’s constant, and kB is the Boltzmann’s
constant. For this Drude dispersive material, e and f coefficients of the
GDM model of (3) are found as e1 = 0, e0 = σ0/dε0τ , f1 = 1/τ , f0 = 0,
and ε∞ = 1. Finally, it must be noted that the fields are updated from
(9)-(14), (18) and (19), by following the same steps of the classical dispersive
HIE-FDTD formulations [?]-[?].

3. Simulation study

In this section, numerical verification of the obtained formulations is dis-
cussed by studying the existence of the surface plasmon polaritons (SPPs)
wave created at the interface between the graphene sheet and dielectric
material. For this purpose, the graphene sheet with the parameters of:
T = 300 Kelvin, µc = 0.5 eV, τ = 0.5 ps is positioned in the middle
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Figure 1: Spatial distribution of Ey electric field component at time step 20000 showing

the SPP surface wave on the Graphene layer.

of a two-dimensional (2D) vacuum domain with a size of 104∆x × 52∆y,
where ∆x = 20 nm, and ∆y = 1 nm. The graphene thickness is d = 1
nm, which is equivalent to one cell in the y-direction, i.e., ∆y. The time
step is selected to satisfy the classical HIE-FDTD limit for the 2D case, i.e.,
∆HIE

tmax
= ∆x/c0 = 6.6713 × 10−18s [?]. The computational domain is termi-

nated by 10 additional convolutional perfectly matched layer (CPML) cells
[?]. The graphene sheet is excited by a sinusoidal dipole electric source with
a frequency of 30 THZ. Fig. 1 shows the spatial distribution of Ey field com-
ponent on the graphene sheet after 20,000 time steps, when the fields reach
the steady state. The SPP surface wave on the graphene layer can be seen

clearly from Fig. 1. The SPP guided wavelength
(
λ̃SPP

)
can be extracted

from Fig. 1 as λ̃SPP = 29∆x = 580 nm, which is very close to the analytical
guided wavelength computed from [?]

λSPP =
λ0√

1− (2/η0σgr)
2

= 584.79nm (21)

where λ0 and η0 are the wavelength and intrinsic impedance in vacuum,
respectively.

4. Conclusion

General HIE-FDTD formualtions of nanomaterial structures, like Graphene,
is presented in this paper. The formulations allow the description of wide
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range of dispersive models. The conducted numerical example that investi-
gates the existence of the SPP surface wave created at the interface between
the graphene sheet and dielectric material validates the accuracy of the pre-
sented formulations.
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