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ABSTRACT 
In the Nonlinear Finite Element Analysis (NFEA) of concrete materials, 
Continuum Damage Mechanics (CDM) provide a powerful framework for the 
derivation of constitutive models capable of describing the mechanical behavior of 
such materials. The internal state variables of CDM can be introduced to the elastic 
analysis of concrete to form elastic-damage models (no inelastic strains), or to the 
elastic-plastic analysis in order to form coupled/uncoupled elastic-plastic-damage 
models. Experimental evidence that is well documented in literature shows that 
concrete’s susceptibility to damage and failure is distinguished under deviatoric 
loading from that corresponding to hydrostatic loading. A reduction factor is 
usually introduced into a CDM model to reduce the susceptibility of concrete to 
hydrostatic stresses/strains. In this work, the effect of a hydrostatic stress reduction 
factor on the performances of two NFEA concrete models will be studied. These 
(independently published) models did not provide any results showing such effect. 
One of these two models is an elastic-damage model while the other is an 
uncoupled elastic-plastic-damage model. Comparisons are carried out between the 
performances of the two models under tensile and compressive loadings, clearly 
showing the effect of the reduction factor on the numerically depicted behaviors of 
concrete materials. In order to have rational comparisons, the hydrostatic stress 
reduction factor applied to each model is chosen to be a function of the internal 
state variables common to both models. Therefore, once the two models are 
calibrated to simulate the experimental behaviors, their corresponding reduction 
factors are readily available at every increment of the iterative NFEA procedures. 
 
INTRODUCTION 
 

Concrete is a complex highly nonlinear composite material with different 
mechanical behaviors under different patterns of loading. Furthermore, concrete’s 
material properties are averaged and homogenized rather than accurately 
determined. These factors, among many others, render the mechanical analysis of 
such a quasi-brittle material an everlasting challenge. 

Several approaches have been applied in the field of numerical modeling of 
concrete failure, resulting in different categories of constitutive models, such as 
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CDM models (isotropic and anisotropic), fracture energy models, smeared crack 
models, and others. 

Within the framework of CDM, there are a number of ways to incorporate the 
damage-related thermodynamic state variables into the NFEA. Restricting this 
discussion to isotropic damage, some models coupled damage to the elastic 
analysis of concrete materials, with no consideration of inelastic strains, to form 
elastic-damage models (Mazars, 1984; Mazars and Pijaudier-Cabot, 1989; Willam 
et. al., 2001; Tao and Phillips, 2005; Junior and Venturini, 2007; Khan et. al., 2007; 
and others). Elastic-damage models were accused of being unable to reproduce the 
unloading slopes during cyclic simulations, unable to capture irreversible strains 
during plastic flow, and unable to provide an appropriate dilatancy control under 
multiaxial states of loading. Nevertheless, elastic-damage models are quite 
noticeable in the literature of engineering mechanics.  

Other models introduced damage mechanics variables into the elastic-plastic 
NFEA of concrete materials, to form either coupled or uncoupled elastic-plastic-
damage models. In the uncoupled models, damage is associated with the elastic 
analysis while the plastic constitutive equations, although present, remained in the 
effective (undamaged) configuration. Examples of such models are those of 
Yazdani and Schreyer, 1990; Lee and Fenves, 1998; Shen et. al., 2004; Contrafatto 
and Cuomo, 2006; Voyiadjis and Taqieddin, 2009; Taqieddin and Voyiadjis, 2009; 
just to mention a few). These models are superior since they exclude the 
shortcomings of the elastic-damage models mentioned earlier. 

In the coupled elastic-plastic-damage models, the damage variables appear in 
the elastic as well as the plastic constitutive equations and evolution laws (Luccioni 
et. al., 1996; Gatuingt and Pijaudier-Cabot, 2002; Salari et. al., 2004; Shao et. al., 
2006; Taqieddin et. al., 2011; among others). These models exhibit complex yield 
criteria, evolution laws, implementation procedures and algorithms, but on the 
other hand, they are capable of simulating specific material behaviors that are 
usually ignored in simpler models. 

In case of an interest in anisotropic damage mechanics models, and for 
thoroughness, the reader is referred to the following contributions: Ju, 1989; 
Yazdani and Schreyer, 1990; Meschke et. al., 1998; Carol et. al., 2001; Voyiadjis 
et. al., 2008; Voyiadjis et. al., 2009; and the references therein. 

For such a quasi-brittle material as concrete, experimental evidence (Resende, 
1987) showed that hydrostatic pressure affects the material’s yield and failure 
strength. Some researchers proposed different damage rules to characterize damage 
in the deivatoric and volumetric modes of response (Resende and Martin, 1984; 
Papa and Talierco, 1996; just to mention a few), while others applied a hydrostatic 
stress/strain reduction factor to their constitutive models (Tao and Phillips, 2005; 
Voyiadjis and Taqieddin, 2009; and others). 

The main purpose of this work is to compare the effect of a hydrostatic 
stress/strain reduction factor on the performances of two isotropic damage models. 
One of these models is the elastic-damage model proposed by Tao and Phillips, 
2005, while the other is the uncoupled elastic-plastic-damage model proposed by 
Voyiadjis and Taqieddin, 2009. These two models were selected for comparison 
because both of them defined the hydrostatic stress/strain reduction factor in terms 
of the same thermodynamic internal state variables. This should not be confused 
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with the fact that the internal state variables themselves are functions of different 
material properties associated with each model. 

The subsequent sections of this paper will introduce, in a brief manner, each of 
these two models as well as their constitutive equations and material properties 
relevant to this work. For the full derivations of these models, their numerical 
integration techniques, and their applications and outcomes, the reader is referred 
to the already published works of Tao and Phillips, 2005; Voyiadjis and Taqieddin, 
2009; and Taqieddin and Voyiadjis, 2009. 
 
Elastic-damage (ED) model  

 
Within the ED model of Tao and Phillips, 2005, the Helmholtz Free Energy 

(HFE) function is defined in the damaged configuration of the material in terms of 
the elastic strain equivalence hypothesis (Steinmann et. al., 1994; Lemaitre and 
Chaboche, 1998; Voyiadjis and Kattan, 2006; and the references therein) and 
presented as follows: 

1 1 1(1 ) ( ) (1 )
2 2 2

e e e e e e e
ij ijkl kl ij ijkl kl ij ijE Eρψ ρψ ε ε ε ε σ ε= −Φ = Φ = −Φ =  (1) 

where eψ  is the total free energy density function (per unit volume), entities with 
an over bar ( x ) are those corresponding to the effective (undamaged 
configurations), ρ  is the material’s density, ijklE  is the fourth-order isotropic 
elasticity tensor, also known as the undamaged elastic operator, ijklE  is the 

damaged counterpart of ijklE , e
ijε  is the elastic strain tensor, ijσ  is the Cauchy stress 

tensor, and Φ  is the total damage variable defined as a weighted average function 
of the damage densities in tension ϕ+  and compression ϕ− , and expressed as 
follows:  

ˆ ˆ
ˆ

σ ϕ σ ϕ

σ

+ + − −+
Φ =

∑ ∑
∑

  (2) 

where σ̂ +  and σ̂ −  are the positive and negative components of the principal stress 
tensor, respectively, while the term in the denominator is the summation of 
absolute values of the principal stresses.   

Under purely isothermal conditions, the second law of thermodynamics states 
that any irreversible process within a material’s behavior should satisfy the 
Clausius-Duheim inequality. Applying standard thermodynamic arguments 
(Coleman and Gurtin, 1967), the following statements are derivable: 

(1 ) (1 )
e

ij ij ijkl kle
ij

Eψσ ρ σ ε
ε

∂
= = −Φ = −Φ

∂
  (3) 

e

Y ψρ
ϕ

±
±

∂
= −

∂
     (no mixing)  (4) 

where ijσ  is the stress tensor in a fictitious undamaged configuration, also known 

as the effective stress of Kachanov, 1958, Y +  and Y −  are the damage energy 
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release rates, also known as the thermodynamic conjugate forces associated with 
tensile ϕ+  and compressive ϕ−  damage, respectively. 

In order to distinguish between the different contributions of hydrostatic and 
deviatoric stress/strain components to damage, and in other words, to reduce the 
susceptibility of the hydrostatic part to damage, Tao and Phillips, 2005, defined a 
hydrostatic stress/strain reduction factor χ . They wrote the HFE function, Eq. (1), 
in terms of the total strain tensor and the hydrostatic mean strain as follows: 

21 1 1(1 ) (1 ) ( ( ) )
2 2 9

e e e e
ij ijkl kl mm ij ijkl klE Eρψ ε ε χ ε δ δ= −Φ + − Φ  (5) 

The hydrostatic stress/strain reduction factor χ  can take different mathematical 
forms. Depending on the state of loading, this factor can range from a linear 
function to a highly nonlinear exponential or power function. Tao and Phillips, 
2005, presented the following definition of χ : 

11
1 exp( )cY dY

χ ±
± ±= −

+ −
     (no mixing) (6)  

where c  and d  are two material constants that are calibrated with experimental 
results, and with units that render the factor χ  dimensionless. 

The thermodynamic conjugate forces in tension Y +  and compression Y −  are 
now readily available using Eqs. (4) and (5): 

2ˆ1 1 (1 )( )
ˆ2 9

e
e e e
ij ijkl kl mm ij ijkl klY E E

σψρ ε ε χ ε δ δ
ϕ σ

+
+ +

+

∂ ⎛ ⎞= − = − −⎜ ⎟∂ ⎝ ⎠
∑
∑

 (7) 

2
ˆ1 1 (1 )( )
ˆ2 9

e
e e e
ij ijkl kl mm ij ijkl klY E E

σψρ ε ε χ ε δ δ
ϕ σ

−
− −

−

∂ ⎛ ⎞= − = − −⎜ ⎟∂ ⎝ ⎠
∑
∑

 (8)  

By paying attention to Eq. (6), it becomes obvious that Eqs. (7) and (8) are 
nonlinear equations that required local iterations during the numerical integration 
scheme.  

Damage initiation under tension or compression is triggered when the 
thermodynamic conjugate force in tension or compression, respectively, becomes 
greater than a specified threshold. This is translated into the following two damage 
criteria:  

0 0g Y Y Z± ± ± ±= − − ≤      (no mixing)  (9) 
where 0Y ±  are the initial damage thresholds in tension (+) and compression ( − ) 
which govern the onset of tensile or compressive damage, respectively. Growth or 
propagation of damage is achieved through hardening/softening parameters Z ±  
which were defined by Tao and Phillips, 2005, to take the following form:  

1

1
1

b
Z

a
ϕ
ϕ

±±
±

± ±

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

     (no mixing)  (10) 

in which a±  and b±  are four material constants (in tension or compression) to be 
calibrated by means of uniaxial tensile and compressive experiments of concrete. 

This concludes a short introduction to the ED model. The integration procedure 
of  the  constitutive  equations  is  thoroughly  explained  in  the  work  of  Tao  and  
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            a) Tensile 11σ  - 11ε  curve     b) Relation between Y +  and ϕ+  

 
       c) Relation between 11ε  and χ +       d) Relation between ϕ+  and χ +  

Figure 1: Uniaxial tension verification results (ED Model) 
 

 
        a) Compressive 11σ  - 11ε  curve     b) Relation between Y −  and ϕ−  

 
        c) Relation between 11ε  and χ −       d) Relation between ϕ−  and χ −  

Figure 2: Uniaxial compression verification results (ED Model) 
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Phillips, 2005, and will not be discussed here for brevity. In this work, the ED 
model is implemented into a FORTRAN user defined material subroutine (UMAT) 
and linked to the NFEA software ABAQUS in order to study the effect of the 
stress/strain reduction factor χ  on the numerical results. The same concrete 
material properties used by Tao and Phillips, 2005, are adopted here to simulate the 
required effect. Uniaxial tension and uniaxial compression numerical results are 
simulated over a single 2D plane-strain verification finite element and presented in 
Figures (1) and (2).  

The experimental results shown in Figure (1a) are the tensile test outcomes of 
Gopalaratnam and Shah, 1985, while the experimental compressive test results 
shown in Figure (2a) are those reported by Karsan and Jirsa, 1969. 

 
Uncoupled elastic-plastic-damage (EPD) model  

 
In such a constitutive model, damage mechanics formulations appear in the 

elastic domain of the material while plasticity remains in the effective (undamaged) 
stress space (Ju ,1989). Therefore, the strain tensor is additively decomposed into 
elastic and plastic strain tensors: 

e p
ij ij ijε ε ε= +   (11) 

and the Cauchy stress tensor is written using the effective stress concept and the 
equivalent strain hypothesis as follows: 

(1 ) ( )p
ij ijkl kl klEσ ε ε= −Φ −   (12) 

This form of the stress tensor leads to the following incremental constitutive 
equation ( x  denotes the time derivative of x ): 

(1 ) (1 ) ( )e e p e
ij ijkl kl ijkl kl ijkl kl kl ijkl klE E E Eσ ε ε ε ε ε= −Φ −Φ = −Φ − −Φ  (13)  

which requires a special technique known as the elastic-predictor plastic-damage 
corrector to perform the numerical integration procedure. 

In the EPD model of Voyiadjis and Taqieddin, 2009, a multi-hardening 
pressure-sensitive effective-stress-space plasticity-yield-criterion is introduced in 
addition to the elastic-damage formulations previously discussed in the ED model 
(with some adjustments). This plasticity yield criterion is a modification to a 
criterion first introduced by Lubliner et. at., 1989, and later adopted by Lee and 
Fenves, 1998; Wu et. al., 2006; and others. It is expressed in terms of the invariants 
of the effective stress tensor, material hardening functions, and material constants 
as follows: 

( )2 1 max max
ˆ ˆ3 ( )H( ) 1 ( ) 0f J I cα β κ σ σ α κ± −= + + − − =−  (14)  

where 2J  is the second-invariant of the effective deviatoric stress 
/ 3ij ij kk ijs σ σ δ= − , 1 kkI σ=  is the first-invariant of the effective stress ijσ ,  κ ±  

denote a set of plastic variables chosen to be the equivalent plastic strains in 
tension and compression (κ + , κ −  to be defined in a subsequent paragraph), 

max
ˆH( )σ  is the Heaviside step function (H = 1 for max

ˆ 0σ >  and  H = 0 for 

max
ˆ 0σ < ), and maxσ̂  is the maximum principal stress. The parameters α  and β  are 
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defined as a dimensionless constant and a dimensionless function, respectively, and 
given as follows: 

0 0

0 0

( / ) 1
2( / ) 1

b

b

f f
f f

α
− −

− −

−
=

−
  (15) 

( )( ) (1 ) (1 )
( )

c
c

κβ κ α α
κ

−
±

+= − − +
−

+   (16) 

where 0bf
−  and 0f

−  are the initial equibiaxial and uniaxial compressive yield 
stresses, respectively, and c±  are two internal state variables defined as the plastic 
hardening functions under uniaxial tension (+) and uniaxial compression ( − ), 
respectively. The detailed expressions of c±  proposed by Voyiadjis and Taqieddin, 
2009, are as follows: 

0( )c f hκ κ+ += ++ +   (17) 

0( ) 1 exp( )c f Qκ ωκ− − ⎡ ⎤= + − −⎣ ⎦
− −   (18) 

where 0f
+  and 0f

−  are the uniaxial tensile and compressive yield stresses, 
respectively, h  is a material constant obtained from the uniaxial tensile stress-
strain diagram, Q  and ω  are material constants characterizing the compressive 
saturated stress and the rate of saturation, respectively. 

The equivalent plastic strains in tension and compression (κ + , κ − ) are defined  
by the following two expressions: 

0

t
dtκ κ± ±= ∫      (no mixing)  (19) 

and κ +  and κ −  are the tensile and compressive equivalent plastic strain rates, 
respectively, given as: 

max
ˆˆ( ) p

irκ σ ε+ =   (20) 

min
ˆˆ(1 ( )) p

irκ σ ε− = − −   (21) 

where max
ˆ pε  and min

ˆ pε  are the two extreme eigenvalues of the plastic strain rate 

tensor p
ijε ,  and ˆ( )ir σ  is a dimensionless weight factor ˆ0 ( ) 1ir σ≤ ≤  defined as: 

3 3

1 1

ˆ ˆ ˆ( )i i i
i i

r σ σ σ
= =

=∑ ∑   (22) 

where ˆ
iσ  ( 1,2,3i = ) are the effective principal stresses, and the symbol  is the 

Macauley bracket, defined as 1
2 ( )x x x= + . 

The EPD model of Voyiadjis and Taqieddin, 2009, is consistently derived 
within the framework of irreversible thermodynamics. The HFE function is defined 
in terms of a suitable set of elastic and plastic internal state variables and presented 
as follows:  

( , , , , ) ( , , ) ( , )e e e p
ij ijρψ ρψ ε κ κ ϕ ϕ ρψ ε ϕ ϕ ρψ κ κ+ − + − + − + −= = +  (23) 

Applying the internal state variable procedure of Coleman and Gurtin, 1967, 
followed by the Lagrange minimization procedure (calculus of functions of several 
variables), the following thermodynamic laws relating the internal state variables to 
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their corresponding conjugate forces are derivable. These laws are lumped here in a 
single equation for shortness: 

, , , ,
p

p p p p
ij d d

ij

F g g f f
Y Y c c

ε λ ϕ λ ϕ λ κ λ κ λ
σ

+ −
+ + − − + −

+ − + −

∂ ∂ ∂ ∂ ∂
= = = = =

∂ ∂ ∂ ∂ ∂
 (24)  

where pλ  and dλ
±  are the plasticity and damage Lagrange multipliers, respectively. 

For the complete derivations, the reader is referred to the work of Voyiadjis and 
Taqieddin, 2009, and Taqieddin and Voyiadjis, 2009. The term pF  is adopted in 
order to indicate the use of a non-associative plasticity flow rule in the constitutive 
equations. A non-associated flow rule means that the yield function f  and the 
plastic potential pF  do not coincide, and therefore, the direction of the plastic flow 
is not normal to the yield surface. This is important for realistic modeling of the 
volumetric expansion (dilatancy) under compression for frictional materials such as 
concrete. The plastic potential function adopted in this EPD model is a Drucker-
Prager type function expressed as follows: 

2 13p pF J Iα= +   (25) 
which facilitates the following derivative: 

2

3
2 3

p
ij p

ij
ij

sF
J

α δ
σ
∂

= +
∂

  (26) 

where pα  is a parameter chosen to provide proper dilatancy (Lee and Fenves, 
1998; and Wu et. al., 2006). 

This concludes a very brief introduction to the EPD model of Voyiadjis and 
Taqieddin, 2009. Many details were overlooked for conciseness, especially those 
related to the numerical integration procedure. Again, the reader is referred to the 
work of Voyiadjis and taqieddin, 2009, and Taqieddin and Voyiadjis, 2009, for a 
comprehensive coverage of all numerical integration aspects.  

In this work, the EPD model is also implemented into a UMAT subroutine and 
linked to ABAQUS in order to study the effect of the stress/strain reduction factor 
χ  on the numerical results. The same concrete material properties used by 
Voyiadjis and Taqieddin, 2009, are adopted here to simulate the required effect. 
Uniaxial tension and uniaxial compression numerical results are simulated over the 
same verification finite element described in the ED model. These results are 
presented in Figures (3) and (4). The experimental results in these figures are the 
same as those demonstrated in the ED model. 
 
Comparisons and Conclusions 
 

Many conclusions can be drawn based on the presented results; nevertheless, the 
objective of this work will be the main focus of the comparisons. Figures (5a) and 
(6a) show the uniaxial stress-strain results of the ED and EPD models under 
tension and compression, respectively. Figures (5b) and (6b) show the strains 
plotted against the reduction factors in the tension and the compression verification 
tests, respectively.  In the case of uniaxial tension, and although the two models are 
similarly capable of reproducing the experimental results, the magnitude of the   
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a) Tensile 11σ  - 11ε  curve     b) Relation between Y +  and ϕ+  

 
       c) Relation between 11ε  and χ +       d) Relation between ϕ+  and χ +  

Figure 3: Uniaxial tension verification results (EPD Model) 
 

 
        a) Compressive 11σ  - 11ε  curve     b) Relation between Y −  and ϕ−  

 
        c) Relation between 11ε  and χ −       d) Relation between ϕ−  and χ −  

Figure 4: Uniaxial compression verification results (EPD Model) 
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            a) Tensile 11σ  - 11ε  curve    b) Relation between 11ε  and χ +  

Figure 5: Comparison of the tensile test results  
 

 
         a) Compressive 11σ  - 11ε  curve     b) Relation between 11ε  and χ −  

Figure 6: Comparison of the compressive test results 
 
reduction factor is quite different for the two models. It is obvious from Figure (5b) 
that less reduction is needed in the case of the EPD model when compared to the 
ED model. The same trend of results is observed in the compression verification 
test, Figure (6b), although the magnitudes of the reduction factors in compression 
are less divergent from each other and many folds higher that those of the tensile 
test. 

These results are justified by looking at Eq. (5), where the HFE function is 
written in terms of the combined damage variable Φ , the effective fourth-rank 
elasticity tensor ijklE , and the elastic strain tensor e

ijε . In the ED model, there are no 
inelastic strains, and therefore, the entire strain increment is elastic, which gives a 
higher value of eρψ . In the EPD model, on the other hand, the strain tensor is 
additively decomposed into elastic and plastic components, thus reducing the 
magnitude of eρψ .  

Another related outcome of the comparisons is the difference in effect of the 
hydrostatic stress on the tensile and compressive simulations in general. Although 
many mathematical forms of the reduction factor are possible, the form of χ  
chosen here to be identical for tension and compression, Eq. (6), clearly shows that 
the hydrostatic pressure effect is more dominant under compression than under 
tension; a result consistent with the literature of engineering mechanics.     
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