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Abstract—In India, the frequency of occurrence of earthquakes is 

more, especially in Himalaya, northeast India and Gujarat region. 

Therefore it becomes essential to estimate the seismic inputs for 

such earthquakes to reduce the structural damage. From 

engineering point of view, the most sought-after data is the strong 

motion accelerograms (SMA), recorded in the places where 

earthquake has occurred. The article analyzes the Indian strong 

motion records of past earthquakes by empirical mode 

decomposition (EMD) technique and in-turn presents few strong 

ground motion parameters, which finds its use in the simulation of  

artificial ground motions. The recorded earthquake acceleration 

time histories are decomposed into a finite number of empirical 

modes of oscillation. The instantaneous frequency and amplitude of 

these modes and evolutionary power spectral density (PSD) is 

estimated from the Hilbert Huang transform (HHT). Strong motion 

parameters such as spectral and temporal centroid, spectral and 

temporal standard deviation, instantaneous power, Arias intensity, 

correlation coefficient of frequency and time are derived from the 

evolutionary PSD. The variation of these parameters with 

magnitude and distance of the recording station has been 

examined. Empirical equations to estimate these ground motion 

parameters are derived from the strong motion data by regression 

analysis. These equations can be used by engineers to estimate the 

design ground motion. 

Keywords- Evolutionary Power Spectral Density; Empirical 

Mode Decomposition; Hilbert Huang Transform; Ground motion 

prediction equations; design ground motion 

I. INTRODUCTION  

The earthquakes constitute a rapid onset and the most 
feared natural hazard, that pose a serious threat of catastrophic 
disaster across the world. The Indian subcontinent is one of the 
most seismic prone areas in the world. Some of the India’s 
most devastating earthquakes in the past which caused heavy 
causalities and economic damages are the 1897 Assam, 1905 
Kangra, 1934 Bihar, 1950 Assam, 1967 Koyna, 1993 Killari, 
1999 Jabalpur,  2001 Bhuj, 2004 Indian Ocean. In the recent 
times, the frequency of occurrence of earthquakes in the 
Himalayas and in the north-east India is relatively high 
compared to peninsular India (Figure 1). This could be due to 
the several reasons like the subduction of Indian lithosphere 

under the Eurasian plate, landslides, soil liquefaction etc and 
hence the hazard in these parts of India is considered to be 
severe. 

Estimating future hazards of a region constitutes an 
important problem in earthquake engineering. One way to 
mitigate the destructive impact of earthquakes is by designing 
the buildings and infrastructure to be safe in case of a future 
earthquake, which makes it essential to estimate future ground 
motion. Also, the success of earthquake resistant design of 
structures strongly depends on the accuracy with which the 
future ground motion can be determined at a particular site. 
Particularly, in the design of major structures and facilities 
such as important buildings, dams, bridges and nuclear power 
plants, it is highly desirable to know the ground motion at a 
specific site that would result from a particular earthquake 
event. Unfortunately, records of the Indian strong motion data 
are very limited for engineers to rely upon. Estimation of 
ground motion time histories under such circumstances by 
understanding the needs of engineers is a challenging task.  

The starting point in the estimation of future ground motion 
is the modeling of the available strong motion data. Recorded 
ground motion time histories during the past earthquakes in a 
region provide valuable information about the expected 
characteristics of ground motion at that particular site during a 
future earthquake in that region.  These estimates are essential 
for evaluating earthquake resistant design procedures, 
estimation of attenuation characteristics, assessment of seismic 
hazard and earthquake risk. Accordingly, analysis of strong 
ground motion has been carried out to understand the potential 
effect of strong shaking during earthquakes using sophisticated 
mechanistic models [1] [2] and ground motions have also been 
simulated for the past earthquakes [3][4]. These models would 
be an obvious choice to estimate ground motion in seismic 
hazard analysis, but uncertainties exist in choosing inputs 
regarding fault rupture process for future earthquakes. Also, 
this approach seems to be effective for the case of scenario 
earthquake, but it is inapplicable for probabilistic seismic 
hazard assessment which is based on consideration of multiple 
earthquakes occurring at different distances from the site. In 
addition, the occurrence of earthquake is random, hence 



difficulties exist in selecting the design ground motion. This 
issue can be addressed through probabilistic seismic hazard 
analysis wherein ground motion from all possible magnitude 
and location combinations are considered in estimating hazard. 
In such situation, empirical models with few input parameters 
based on strong motion records would be an obvious choice. 
These empirical methods are more popular among engineers as 
it requires very few input parameters in the generation of 
artificial time histories.  

Several parameters required for engineering purposes has 
been identified from the earthquake acceleration time histories. 
These parameters also known as strong motion parameters 
characterize the ground motion. The most popular measures are 
peak ground acceleration (PGA), peak ground velocity (PGV) 
and Spectral acceleration (Sa) respectively. Ground motion 
prediction equations (GMPE) have been developed to obtain 
these measures based on the recorded strong motion data. 
These empirical equations are routinely used in linear structural 
analysis. However, nonlinear dynamic analysis demands 
acceleration time histories valid in all frequency ranges. For 
this purpose, stochastic process models for generating samples 
of acceleration time histories have also been developed [5]. 
However spectral nonstationarity which has a substantial effect 
on the structural response[6][7] is ignored in these approaches. 
Another drawback with these approaches are, most of the 
above mentioned models are Fourier based. But, it is well 
known that for nonstationary processes like the earthquake 
acceleration time histories, whose duration is short and 
amplitude and frequency contents change with time, Fourier 
based approaches can yield distorted information.  

This has been pointed out by [8] and has shown that 
adaptive basis functions are required to understand nonlinear 
and nonstationary data. This technique has been used to 
analyze the NGA (Next Generation of Ground-Motion 
Attenuation Models) database (Raghukanth and Sangeetha 
2012) and strong motion parameters required for the simulation 
of acceleration time histories have been arrived. However the 
developed ground motion prediction equations using the NGA 
database may not be valid for the Indian scenario. Hence, in 
this paper the Empirical Mode Decomposition (EMD) 
technique combined with Hilbert-Huang Transform (HHT) is 
used to model the Indian strong motion data of past events. 
Important parameters of the evolutionary PSD are estimated 
from Hilbert spectral analysis. With these parameters one can 
generate ensemble number of ground motions, which is the key 
input in any nonlinear structural analysis. 

II. GROUND MOTION DATA 

The prerequisite to develop any model is the availability of 
a good quality strong motion dataset. For the present study the 
Indian strong motion data is considered. The strong motion 
data for the past earthquakes (since 2005 onwards) are 
available in the Pesmos website (http://www.pesmos.in/) as 
acceleration time histories. Figure 2a shows the fault map of 
India with topography. The location of strong motion stations  
is also shown in Figure 2a.  This database consists of 430 
strong motion records generated by 135 events. There are total 
of 94 recording stations. Figure 2b shows the earthquake 
epicenters of all the events in the database. It can be observed 

from the figure that the moment magnitude (Mw) of the events 
lie in between Mw 2.3 to 7.8. A closer view of the strong 
motion stations in the north east India along with the faults are 
available in Figure 2c. The Indian strong motion database is 
shown in Figure 3(a,b) as a function of magnitude and 
epicentral distance and hypocentral distance respectively. The 
epicentral distance (Rrup) varies from 2 km to 1000 km, the 
hypocentral distance varies from 9 km to 1000 km, where as 
focal depth of the events lie in between 2 to 190 km. The local 
soil condition of the recording stations characterized in terms 
of average shear wave velocity in the top 30 meters (Vs30). This 
information at all the strong motion stations is available in the 
PESMOS website (http://www.pesmos.in/) along with data. 
Since horizontal components are widely used in seismic 
design, both the north-south and east-west components are 
used in this study to estimate ground motion parameters. 

 

Figure 1. Historic Seismicity superposed on known Faults (38860 events of 
Mw ≥4 including foreshocks and aftershocks) 

III. EMPIRICAL MODE DECOMPOSITION 

The adaptive technique proposed by [8] known as Hilbert 
Huang transform (HHT) consists of empirical mode 
decomposition (EMD) and Hilbert transform. The EMD 
decomposes the signal into a finite and often small number of 
empirical modes called intrinsic mode functions (IMFs). EMD-
HHT technique has found a lot of applications especially in 
earthquake Engineering. [9] presents a detailed review of the 
EMD algorithm to extract the IMFs. The recent Sikkim 
earthquake,2011 caused great damages to infrastructure. The 
earthquake was recorded at 13 station. However, Gangtok 
station which is 80km from the epicenter of the sikkim 
earthquake recorded the highest PGA  of nearly 200cm/sec

2
. 

Hence in the following sections emphasis is made on the 
Gangtok station, since it is becomes necessary to design the 
structures for the maximum PGA that can be obtained during a 
future earthquake at that site.  In Figure 4(a,b), IMFs of both 
horizontal components acceleration time histories recorded at 
Gangtok station during the Sikkim earthquake (Mw 6.8) are 
shown. The sum of the IMFs leads to the original data. After 



the EMD, the earthquake acceleration time history can be expressed in terms of IMFs as follows, a(t)=IMFi(t) 

 

Figure 2a. Location of the 94 strong motion station used for the present study 

 

  

Figure 2b. Epicenters of the 430 events in the database 

 

  

Figure 2c. Fault Map of NorthEast India along with the stations 



 

 

(a) 

 

(b) 

Figure 3. Indian strong motion data as a function of a.)epicentral distance b.)hypocentral distance 

IV. HILBERT HUANG TRANSFORM (HHT) 

The evolutionary spectrum can be constructed by taking the 
Hilbert transform the IMFs as  
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where P indicates the Cauchy principal value. Since IMFj 
and Dj form the complex conjugate pair, one can form the 
analytical function as 
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The instantaneous frequency (IF) of the j
th
 IMF can be 

estimated as 

dt/)t(jd)t(j 
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The original acceleration time history can be 
expressed as the real part of the sum of the Hilbert 
transform of each IMF 
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The estimated instantaneous frequencies of the 
recorded acceleration time histories recorded at Gangtok 
station for the Sikkim event are shown in figure 5(a,b). It 
can observed from the figure that the instantaneous 
frequencies of the IMFs decrease in the higher modes. 
The mean frequency of each IMF is determined by 
averaging instantaneous frequency over time. In a similar 
fashion, the central frequency of the 10 IMFs for all the 
430 acceleration time histories have been estimated by 
HHT. Earthquake ground motion in general can be 
decomposed into number of IMFs. As the variance of the 
higher modes is insignificant, only the first 10 IMFs are 
considered for further statistical analysis. Table 1 shows 
the mean and standard deviation of the mean frequency 
estimated from 430 time histories for both the horizontal 
components. In figure 6(a,b) the variation of the obtained 
mean IF of the first 10 IMFs with moment magnitude 
(Mw) and epicentral distance(R) is shown. It can be 
observed that the mean of the instantaneous frequency 
remains constant and doesn't show any pattern with Mw, 
R. 

The percentage of variance explained by each IMF, or 
the contribution of each IMF to total variance of the data 
is determined for all the 430 time histories. The mean and 
standard deviation of the percentage of variance 
estimated from 430 samples is presented in Table 1 for 
both EW and NS components. It is observed that IMF1 
with a central frequency of 18.64 Hz is the predominant 
mode contributing to 43 % of the variability in the data. 
IMF2 with a central frequency of 8.39 Hz is the second 
most important mode in both the cases. The next 
important modes are IMF3 and IMF4 oscillating about 4 



Hz and 2 Hz contributing to 5 % variability in the data. 
These four dominant modes explain about 97% 

variability in both the (East-West) EW and (North-South) 
NS component of the acceleration time histories. 

  

(a) Component: EW 
  

(b) Component: NS 

Figure 4a. Intrinsic Mode Functions of acceleration recorded at Gangtok station during Sikkim earthquake 

The percentage of variance explained by each IMF, or 
the contribution of each IMF to total variance of the data 
is determined for all the 430 time histories. The mean and 
standard deviation of the percentage of variance 
estimated from 430 samples is presented in Table 1 for 
both EW and NS components. It is observed that IMF1 
with a central frequency of 18.64 Hz is the predominant 
mode contributing to 43 % of the variability in the data. 
IMF2 with a central frequency of 8.39 Hz is the second 
most important mode in both the cases. The next 
important modes are IMF3 and IMF4 oscillating about 4 
Hz and 2 Hz contributing to 5 % variability in the data. 
These four dominant modes explain about 97% 
variability in both the EW and NS component of the 
acceleration time histories. 

V. EVOLUTIONARY POWER SPECTRAL DENSITY 

The evolutionary PSD [G(t,)] of the acceleration 
time history can be constructed from HHT as [10] 
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The corresponding evolutionary PSD of both EW and 
NS component is shown in figures 7(a,b). The 
instantaneous average power [Pa(t)], the central 
frequency [Fc(t)] and the frequency bandwidth [Fb(t)] 
can be estimated from the first three spectral moments as 
[11] 
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These three strong motion parameters are shown in 
figure 8(a,b) for both the horizontal components recorded 
at Gangtok station for the 2011 Sikkim earthquake. It can 
be observed that the central frequency and frequency 



bandwidth oscillate around a constant mean and doesn't 
show any pattern with time where as instantaneous power 

decreases with time. 

 
 

 
(a) (Component: EW) 

 
(b) (Component: NS) 

Figure 5. Instantaneous frequencies of acceleration time histories shown in figure 4(a,b) 
 

TABLE 1  CENTRAL FREQUENCY OF THE IMF’S IN HZ AND % VARIANCE CONTRIBUTED TO TOTAL VARIABILITY OF THE DATA  

 
Component: East Component: North 

Frequency 

Mean±STD 

%Variance Explained 

Mean±STD 

Frequency 

Mean±STD 

%Variance Explained 

Mean±STD 

IMF1 18.64±6.71 42.56±21.64 18.53±6.57 42.78±22.01 

IMF2 8.39±3.49 34.76±13.35 8.36±3.44 34.83±12.83 

IMF3 4.23±1.71 15.62±10.77 4.19±1.70 15.46±10.45 

IMF4 2.21±0.95 4.67±4.99 2.19±0.92 4.37±4.24 

IMF5 1.14±0.46 1.13±1.75 1.13±0.46 1.10±1.62 

IMF6 0.58±0.25 0.34±0.99 0.57±0.22 0.33±0.52 

IMF7 0.28±0.11 0.12±0.13 0.28±0.11 0.14±0.22 

IMF8 0.13±0.06 0.09±0.24 0.13±0.06 0.10±0.39 

IMF9 0.06±0.02 0.08±0.52 0.06±0.03 0.10±0.50 

IMF10 0.03±0.01 0.04±0.16 0.03±0.02 0.06±0.24 

 

 
(a) 

 
(b) 

Figure 6a. Central frequency of all the IMF's as a function of Magnitude, rupture distance (Component: EW) 



 
(a) 

 
(b) 

Figure 6b. Central frequency of all the IMF's as a function of Magnitude, rupture distance (Component: NS) 

 

(a) Component : EW 

  

 

(b) Component : NS 

Figure 7(a,b). Evolutionary PSD of acceleration time histories shown in figure 4(a,b) for the horizontal component 

  

 

Figure 8a. Instantaneous power, Central frequency and Frequency bandwidth estimated from evolutionary PSD . (Component: EW) 



  

 

Figure 8b. Instantaneous power, Central frequency and Frequency bandwidth estimated from evolutionary PSD. (Component: NS) 

 

VI STRONG MOTION PARAMETERS 

A few parameters which are of engineering interest 
can be identified from the evolutionary PSD. In this 
study, six parameters namely total energy of the 
acceleration time history (Eacc) also known as Arias 
Intensity (AI), spectral centroid [E(f)], temporal centroid 
[E(t)], spectral standard deviation [S(f)], temporal 
standard deviation [S(t)] and the correlation of time and 

frequency [(t,f)] are used to characterize the 
evolutionary PSD of all the 430 acceleration time 
histories. These parameters are estimated from the 
evolutionary PSD as 

0 0

( , )accE G t d dt 
 

  
   (11) 

0 0

0 0

( , )

( )

( , )

G t d dt

E

G t d dt

  



 

 

 

 

 
   (12) 

2

2 0 0

0 0

( ( )) ( , )

( )

( , )

E G t d dt

S

G t d dt

   



 

 

 




 

 
   (13)

 

0 0

0 0

( , )

( )

( , )

tG t d dt

E t

G t d dt

 

 

 

 

 

 
    (14) 

2

2 0 0

0 0

( ( )) ( , )

( )

( , )

t E t G t d dt

S t

G t d dt

 

 

 

 




 

 
  (15) 

0 0

0 0

( ( ))( ( )) ( , )

( , )

( ) ( ) ( , )

t E t E G t d dt

t

S t S G t d dt

   

 

  

 

 

 


 

 
  (16)

 

These parameters are estimated for both the horizontal 
components. Figure 9(a,b) shows the spectral centroid 
and its standard deviation as a function of magnitude and 
distance for both the horizontal components. It can be 
observed that spectral centroid decreases with increase in 
magnitude and closest distance to rupture. The temporal 
parameters are shown in figure 10(a,b) for both the 
horizontal components. The temporal centroid and 
standard deviation increases with increase in magnitude 
and distance to rupture. Figure 11 shows the variation of 
Arias intensity and correlation coefficient of time and 
frequency with the magnitude and distance. 



 

(a) (Component: EW) 

 

(b) (Component: NS) 

Figure 9(a,b). Spectral centroid and Spectral standard deviation of the evolutionary PSD as a function of Mw,R 

 

(a) Component : EW 

 

(a) Component : NS 

Figure 10(a,b). Temporal centroid and Temporal standard deviation of the evolutionary PSD as a function of Mw and R.  

 

(a) Component : EW 

 

(b) Component : NS 

Figure 11(a,b). Arias intensity and correlation coefficient of the evolutionary PSD as a function of Mw and R.



VII GROUND MOTION PREDICTION EQUATIONS 

Characterization of the evolutionary PSD is followed 
by the development of empirical equations to predict the 
six strong motion parameters. These attenuation 
equations are the key component in seismic hazard 
analysis. Several functional forms of ground motion 
attenuation have been proposed in the literature reflecting 
salient aspects of the spread of ground motion ([12], [13], 
[14]). After reviewing the various available forms of 
equations, it has been decided to develop the empirical 
relation for both horizontal components in the form 
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where y, Mw and R refer to ground motion parameter, 
moment magnitude and distance respectively. h, is the 
pseudo focal depth to control the ground motion 

parameters close to the fault rupture. ln() is the error 
associated with the regression. A two stage regression 
analysis is carried out on the SMA data to obtain the 
coefficients. In this procedure equation 17 is first written 
as 
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Here n is the number of earthquakes = 430, Ei is a 
constant for the i

th
 earthquake and li is a dummy variable 

which takes value 1 for the i
th
 earthquake and 0 

otherwise. d is the error in the regression associated with 

distance dependence. The unknowns (5,6,7,Ei) in the 
above equation are determined from linear regression 

analysis. The obtained (5,6,7) are reported in Tables 2 
and 3. Once the distance and soil coefficients are known, 

the coefficients ((1,2,3,4) are determined from Ei as,  

1 2 w 3 w 4 wM ln(M ) exp(M )i mE           (19) 

where m is the error in the regression associated with 
magnitude dependence. The constants of regression are 
reported in Tables 2 and 3. The standard deviation of the 
ground motion which is required in seismic hazard 
analysis can be expressed as  

2 2(ln ) ( ) ( )m d      
  (20) 

These values are also reported in the above tables. 
These results can be used to construct the mean and 
(mean+sigma) ground motion parameters of the 
evolutionary PSD on any type site condition in shallow 
active regions in the world. Figure 12 shows the variation 
of Arias Intensity with  distance for different magnitudes 
for both the horizontal components. 

TABLE 2. COEFFICIENTS IN EQUATION 17 FOR NS COMPONENT 

Component: NS 1 2 3 4 5 6 7 h (d) (m) 

Eacc (cm2/sec3) 4.0931 1.3524 3.30 0.0 0 -2.7612 0.0037 - 1.2809 2.4745 

E() (Hz) 3.2951 -0.0363 0 0 -0.0116 -0.1284 0.0184 15 0.1844 0.3477 

S() (Hz) 2.6539 -0.0571 0 0 -0.5081 -0.0516 0.0296 1 0.1252 0.1944 

E(t) (s) 3.9698 0 0 0.0006 -2.4033 -0.1264 -0.0254 1 0.2944 0.3662 

S(t) (s) 1.0460 0 0 0.0006 0.0245 0.1929 -0.0744 11 0.2493 0.4175 

(t, ) 0.0598 -0.0164 0 0 0.0067 0.0006 0.0229 10 0.0511 0.0526 

TABLE 3. COEFFICIENTS IN EQUATION 17 FOR EW COMPONENT 

Component: EW 1 2 3 4 5 6 7 h (d) (m) 

Eacc (cm2/sec3) 4.2 1.36 3.35 0.0 0 -2.8 0.004 - 1.3 2.4 

E() (Hz) 3.3 -0.04 0 0 -0.02 -0.13 0.02 11 0.19 0.37 

S() (Hz) 2.8 -0.06 0 0 -0.6 -0.06 0.03 2 0.13 0.20 

E(t) (s) 4.1 0 0 0.0007 -2.5 -0.13 -0.03 3 0.30 0.37 

S(t) (s) 1.2 0 0 0.0007 0.03 0.19 -0.08 10 0.25 0.42 

(t, ) 0.07 -0.02 0 0 0.007 0.0006 0.03 11 0.05 0.06 

 

 

 

 



 

Figure 12. Ground motion relation for Arias Intensity as a function of R 
given Vs30= 1 km/s 

VIII SUMMARY AND CONCLUSION 

This article explores the application of EMD-HHT 
technique for characterizing earthquake acceleration time 
histories. A total of 430 horizontal components generated by 
135 events from Indian strong motion database (Pesmos) have 
been used in the analysis. The EMD technique shows some 
interesting features of SMA data. It is observed that earthquake 
accelerations can be represented as a sum of ten independent 
modes. The mean instantaneous frequency of these modes 
estimated from time averaging doesn't show any pattern with 
magnitude, distance to rupture and the site shear wave velocity.  

The contribution of the Individual modes to the total 
variability of the data is reported in Table 1. The first IMF with 
mean instantaneous frequency of 18 Hz explains the maximum 
variability of the data in both the horizontal components. The 
evolutionary PSD of the strong motion data is constructed from 
HHT. Since modeling the evolutionary PSD is complex, 
spectral and temporal centroid, spectral and temporal standard 
deviation, Arias intensity and correlation coefficient have been 
extracted from the PSD. The variation of these parameters with 
magnitude and distance has been reported in figures 9-11. The 
spectral centroid decreases with increase in magnitude and 
rupture distance. The temporal centroid which characterizes 
duration of the ground motion increases with magnitude and 
rupture distance. These patterns are consistent with the 
seismological concepts. Empirical equations to predict these 
six parameters have been derived by two-step regression 
analysis for both the horizontal components. These equations 
can be used to estimate the mean values of the six ground 
motion parameters for a given magnitude, rupture distance and 
the site condition. The six strong motion parameters estimated 
in this study can be used as an input in these studies and an 
ensemble of acceleration time histories can be constructed by 
the spectral representation method of [10]. 
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