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ABSTRACT

The dynamic behavior of neutralization process in
(CSTR) is studied theoretically and experimentally,
the process control is developed using different
control strategies, conventional feedback control,
and neural network (NARMA-L2, NN Predictive)
control for acetic acid/caustic soda system.

A good agreement is obtained between the
simulated and experimental responses of the
dynamic model for the pH neutralization system in
open loop.

The optimum tuning of control parameters are found
by two different methods; Frequency curve method
(Bode diagram) and Process Reaction Curve using
the mean of Square Error (MSE) method. Pl and PID
controls are implemented as control strategies in this
work.

The results show that the artificial neural network is
the best method to control on neutralization process
and it is better than the conventional method, for all
cases the NARMA-L2 controller is the preferable
method for control purposes because it has smaller
value of mean square error (MSE). MATLAB
program is used as a tool of solution for all cases
used in this work.

Keywords: Neutralization, CSTR, Artificial Neural
Network, (NARMA-L2, NN Predictive) control.

1 INTRODUCTION

1.1 Neutralization Process

The neutralization process has long been taken as a
representative problem of nonlinear chemical
process control due to its nonlinearity and time-
varying nature. The neutralization is a chemical
reaction. The control objectives are to drive the
system to a different pH conditions (tracking control)
or to regulate the effluent pH value despite the
disturbance by manipulating the flow rate of titrating
stream [1].

Henson and Seborg [2] proposed the dynamic model
of the pH neutralization system using conservation
equations and equilibrium relations. The model also
includes valve and transmitter dynamics as well as
hydraulic relationships for the tank outlet flows.
Modeling assumptions include perfect mixing,
constant density, and complete solubility of the ions
involved.

In wastewater treatment, atypical pH control system
consists of one or more reactors, mixer, measuring
elements, controllers and reagent delivery systems.

Control of pH is important to many processes
including: wastewater neutralization, chemical and
biological reaction, production of pharmaceuticals,
fermentation, food production, municipal waste
digestion, acid pickling/etching processes,
coagulation/precipitation processes, boiler water
treatment, and cooling water treatment [3].

Basically, a pH control system measures the pH of
the solution and controls the addition of a
neutralizing agent (on demand) to maintain the
solution at the pH of neutrality, or within certain
acceptable limits. These pH control systems are
highly varied, and design depends on such factors
as flow, acid or base strength or variability of
strength, method of adding neutralizing agent,
accuracy of control (i.e., limits to which pH must be
held), and physical and other requirements [4].

1.2 pH Control Methods
Many methods are used to control pH neutralization
process, which may be classified into:

A. Conventional methods (Feedback control)

Feedback control in general is the achievement and
maintenance of desired condition by using an actual
of the condition and comparing it to a reference
value (set point), and using the difference between
those to eliminate any difference between them.
Most controller use negative feedback in which
measured process output (control variable) is the
subtracted from a desired value (set point) to
generate an error signal (Ei). The controller
recognizes the error signal and manipulates a
process input (control element) to reduce the error;
Fig. 1 represents the block diagram of Feedback
Controller. The most impog&nt tyees of industrial

b) On — oiicontroller

1

The sing é controller W(ﬁdl-b%%troller. The
bl ) ) _

The on-gjij g;trgsllﬁﬁﬁigﬁrﬁm& :[Z\?vgfh




d) Derivative Control

c(t)zKCrDaa’,—Z;j+cs (3)

e) Proportional —
K.t

c)=K,EM+=S[E@)dt+c, (4)
770

f) Proportional-integral-derivative Controller (PID)

inteqral Controller

t
(=Ko EO+ (B0 di+ K o v Eveys)
T; 0 dt

B. Modern method (Artificial Neural Network
control)
Neural computing is one of the fastest growing areas
of artificial intelligence. The reason for this growth is
that neural nets hold great promise for solving
problems that have proven to be extremely difficult
for standard digital computers. The typical neural net
consists of processing neurons and information flow
channels between the neurons, called interconnect.
There are three layers of neurons: input, hidden and
output [6] of particular relevance in the process
control field is the well-established ability of neural
networks to learn complex nonlinear functional
relationships. This immediately suggests that neural
networks may be used for nonlinear process

signals to propagate through the network, and read
the output values [12]. There are two types of
artificial neural network:

A. NN Predictive Control

Pottmann and Seborg [13, 14] applied a neural
network model predictive control algorithm to a pH
neutralization process

The model predictive control method is based on the
receding horizon technique. The neural network
model predicts the plant response over a specified
time horizon. The predictions are used by a
numerical optimization program to determine the
control signal that minimizes the following
performance criterion over the specified horizon [5].)

?"\1( Vp(tH)-
v (’[+J)2+p2"“J (W(t+j—1)—u'(t+j— 2]](6)

Where N1, N2, and Nu define the horizons over
which the tracking error and the control increments
are evaluated. The u variable is the tentative control
signal, ¥, is the desired response, and ym is the

network model response.
B. NARMA-L2 control

Using the NARMA-L2 model,
controller [12, 15]

you can obtain the

modeling by learning the complex nonlinear
relationships between process variables [7]. Neural ulk+1) = k"'d —fIy(k), ..o ylk—=n+1), ulk), ..., u(k-rn
networks have been used successfully to control gy (k) ...,;‘p‘(k—n+ 1), u(k), ..., u(k—n+ 1)]

non-linear processes, both in simulation [8, 9] and
online [10].

The impetus for employing artificial neural network
ANNs to control nonlinear systems is due to their
advantages over other nonlinear modeling
paradigms. pH process can have characteristics,
including nonlinearity, which render it difficult to
control. Consequently, a great deal of research effort
has been applied to pH control and numerous
different control strategies have been proposed.
Several workers have applied model-based control,
employing empirical models, to pH control. Nahas et
al. [11] applied a neural network based internal
model controller to a simulated CSTR pH
neutralization process. The nonlinear control system
includes dead time compensation in terms of a Smith
predictor

Referring to Fig.s (2 and 3), the network functions
each neuron receives a signal from the neurons in
the previous layer, and each of those signals is
multiplied by a separate weight value. The weighted
inputs are summed, and passed through a limiting
function which scales the output to a fixed range of
values. The output of the limiter is then broadcast to
all of the neurons in the next layer. So, to use the
network to solve a problem, we apply the input
values to the inputs of the first layer, allow the

Therefore, the aim of the present work is to propose
(NARMA-L2 and NN Predictive) network, which is
used to model the dynamics of the CSTR problem
and a typical problem was solved. Artificial Neural
Networks (ANNs) have been shown to be effective
as computational processors for various tasks
including data compression, classification,
combinatorial optimization problem solving, modeling
and forecasting, and adaptive control [16].
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almost neutral solutions, as is often the case
industrially. By making material balances on acetate
and sodium, using the acetic acid and water
equilibrium relationships and the fact that the
solution must be electrically neutral, we can
completely formulate the problem.

NaOH + HAc+H,0 = H,0+ Ac +Na" +H" +OH  (8)

The acetate and the sodium ions in the outflow from
the tank would be related to the total flows F,and F,

and to the feed concentrations of weak acid [HAC]
and strong base [NaOH)] entering the tank.

Hence, the mass balances on these weak acid and
strong base components are:

Acetate balance:

X, = [H4c T+ [4c |9

. % -, F, - (F,+ F)lx ,100)

Sodium balance:

dlX
V%: CBFb_(Fa+Fb)[XB](ll)
Acetic acid equilibrium:

K = [Ac 7][H+] (12)
‘ [HAc ]
where K, is the dissociation constant
Water equilibrium

The electro neutrality equation (the charge balance)
is

|7 lor |=k, (13

e, 1o |7 - ]= [x  dlor | a9

X . +1077% — ‘i((;l_pH — 10751 =0 (15)
1+ ——
KA
Where

14 2

K =10 (moll) K =1.75*10
w A

5 +
pH = -logio[H ]

2.2 Experimental Work
A laboratory pH control system was developed with
provision for two separate liquid feeds; the essential
part of the neutralization system is a 3.318 L
cylindrical mixing vessel of glass with a variable
speed motor driven stirrer. The mixing vessel has
effluent and reagent feed, sampling outlet (or drain),
dip electrode, and an overflow line to maintain the
liquid level in the vessel. Dimensions of the vessel
are 0.15 m inside diameter and 0.17 m total height
with a 0.15 m height of the overflow. The stirrer is
fitted with cruciform rotor and has one impellers type
turbine made of stainless steel. The stirrer operates
with the range of 0-100 rpm. The pH of the solution
in the mixing vessel is monitored by a pH meter,
which is fitted at the top of vessel [17].
The effluent fed from 20 L glass tank and the reagent
fed from 50 liter stainless steel tank using two
polypropylene centrifugal pumps of capacity 0.41 L/
sec. Two rotameters having the stainless steel float
with range of flow (0—1 L /sec) were employed for
measuring the flow rate of the effluent and reagent.
The neutralization system which was used during the
experimental work is Acetic acid - caustic soda
system. The physical properties of these chemicals
are given in Table 1.
Six runs were carried out for the proposed
neutralization system (acetic acid - caustic soda), the
acetic acid was the influent and the caustic soda was
the reagent. Acid flowrate was fixed at 15 lit. /min. by
using a needle valve in rotameter. Base flowrate
stepped up from 15 to 30 lit. /min. by using needle
valve in rotameter. The transient responses of the
neutralization process listed in Table (2) for two
types of responses which are: -
A. The response for a step change (+ve) for
base flowrate
B. The response for a step change (-ve) for

base flowrate
Computer simulation was carried out using MATLAB.
MATLAB’s Graphical User Interface (GUI) can be
used for investigating of the static and dynamic
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3.1 Dynamic Behavior

The dynamic responses are studied for different step
change in the manipulated variable (Fg) in order to
study the effect of each change on the controlled
variable (pH). These changes are:

(20 % and 30%) step change in the base flow rate
(Fg). The experimental runs for dynamic of
neutralization process are listed in Table 2. The
effect of the base flow rate (Fg) on the pH is
illustrates in Figs. (5 and 6). From Fig. 5 it can be
seen that the increase in the base flow rate (Fg) is
directly proportional to pH for different steps in the
base flow rate (Fg) (computer simulation programs),
while in Fig. 6 an increase in the base flow rate (Fg)
is directly proportional to pH on using different steps
in the base flow rate (Fg) (experimental work).

Figs. (7 and 8) show the experimental dynamic of
neutralization process for +ve and -ve step
changes.

3.2 The closed loop system

Feedback controller is applied using Pl and PID
controller modes to control the CSTR process;
therefore, tuning the control parameters (proportional
gain (Kg), time integral (1) and time derivative (1p)
must be done first. The optimum values of the
controller parameters (K¢, 1;, Tp) are obtained using
computer simulation programs based on mean
square error (MSE). The control tuning is found by
two different methods which are Process Reaction
Curve (PRC) and Frequency Analysis (Bode
diagram).

a. Results of control tuning using Pl, PID
controller
In this section, the step change is taken in the
set point of the pH using Pl and PID controller
modes as follows:-
Fig. 9 shows the Bode diagram of the closed loop
of (CSTR) reactor of pH neutralization process.
Fig. 10 shows the transient response of different
control tuning methods with PI controller mode
while Fig. 11 shows the (time X absolute error)
versus time for this case. Fig. 12 shows the
transient response of different control tuning
methods with PID controller mode while Fig.13
shows the (timeXx absolute error) versus time.
Fig. 14 shows the comparison between the
transient response for Pl and PID controllers
while Fig. 15 shows the comparison between the
(time x mean square errors) versus time for this
case.
All the control parameters of Pl and PID
controllers are listed in Tables (3 and 4). It is clear
that PID mode is better than Pl mode because of the
good tuning of adjusted parameters values in PID
mode which gives the smaller overshoot and makes
the system with smaller oscillation and reaches the
new steady state value in shorter time and reaches
the new steady state value in shorter time.

From the Comparison of the Process Reaction
Curve method with Frequency Analysis Curve
method, it was concluded that; the tuning by using
Frequency Analysis Curve method is worst than
Process Reaction Curve method because Frequency
Analysis Curve method depends on closed loop
system, while, Process Reaction Curve method
depends on open loop system and the proportional
gains are larger for the Process Reaction Curve
method. Also the area under the curve of the
Process Reaction Curve method is lower than the
area under the curve of the Frequency Analysis
Curve method and values of the MSE in the first
method are less than those in the second
method.

b. Results of control tuning using NARMA-L2
and NN Predictive controller

NARMA-L2 algorithm and NN Predictive control
are implemented using back-propagation networks in
this work, which depend on

* changing the number of neurons in the hidden layer
can be represented the degree of complexity of the
system.

* The ability of input layer to store information was
used to represent the dynamic behavior of system
by using the tapping delay lines for input/output
signals.

Figs. (16 and 17) shows the transient response of

NARMA-L2 and NN Predictive control

respectively. Comparing NARMA-L2 with NN

Predictive control, it can be seen that; the NARMA-

L2 control is better than NN Predictive control

because the values of the MSE in the first method

are less than those in the second method. The
comparison between NARMA-L2 and NN Predictive
controls is listed in Table 5 while the comparisons
among feedback control, NARMA-L2 and NN
Predictive controls is listed in Table 6.

CONCLUSIONS
The Process Reaction Curve method (Cohen —Coon
tuning) is better than the Frequency Analysis Curve
method (Ziegler-Nichols tuning). PID feedback
controller is better than Pl fee back controller
Implementation of artifis
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Table1. Properties of The feed Solutions at 25°C
Densi Concentr Molecular
Material ty ation lonization weight
Kg/m® | mole/L | constant
1528
NaOH
50%
HAc 80% '

ORDER FULL

%4 VERSION $

,o,. /nt. dr\"e(




Table2. Experimental Runs for Dynamic of

Neutralization

Table5. Comparisons between NARMA-L2 and NN
Predictive control

Table3. Control parameters of Pl controller

method

Run Influent Reage Type of Conditions Criteria NARMA-L2 NN Predictive
nt Change
No.
MSE 1.1016*10"-7 1.1675*107-7

1 HAc NaOH Step Step in base flowrate from

30 to 40 lit. /min. +ve

Training 1.34*107-3 1.87*10”-3

2 HAc NaOH Step Step in base flowrate from

30 to 45 lit. /min. +ve - -

Validation 1.27*10*-4 1.82*107-3

3 HAc NaOH Step Step in base flowrate from

30 to 50 lit. /min. +ve Test 1.437*10"-4 1.97*10”-4
4 HAc NaOH Step Step in base flowrate from

40 to 30 lit. /min. —ve

5 HAc NaOH Step Step in base flowrate from

4510 30 t. /min. —ve NOMENCLATURES
6 HAc NaOH Step Step in base flowrate from - Definition

50 to 30 lit. /min. — s "

o0 1 fmin. —ve Magnitude of change in
Process Reaction Curve

Area of heat transfer

Concentration of acid

(kmol/m®)

, Controller Parameters Concentration of base (kmol/m®)
Control Tuning MSE
Methods K, 7 o Modeling error(_v;, ¥V
)* (-]
Ziegler-Nichols tuning .
NS 19.0659 | 0.1949 | - | 5.0616*10%-5 Vo_Iumetric flow rate of
acid (m%min)
Cohen —Coon tunin -
9 | 710536 | 01950 | - | 7.4007"10%6 Volumetric flow rate of
59 F2 base (m¥min)
fl.1.g[.], | Neural input-output
N2[] | mappinggunctiggts
Table4. Control parameters of PID controller Gu(s) Trag
Controller Parameters | -
Cotl“:/tlrotlh TZning MSE Ga(s) [, Klite
etnoas T
Ke L 2 GA(S ramsier fu'gnc?&ons
P between p d
Ziegler-Nichols tuning _E@S’E
(Bode di ) 246736 | 01169 | 0.0292 | 4.8345*10 Gowil3 Tran%RfDunétKﬁ FU'LI[__]
ode diagram . . . . * ovi\& over
- ﬂ
nlinear, cti
ion VERSION ©
Cohen ~Coontuning | e 3041 | 01450 | 00214 | +7>4010 % t\, tE functi N )
(PRC) . . : "y LifiSar activation function




M Number of previous input [-1
Number of the previous
N -]
output
The weighted sum of the
neth; |input of node j in the [-]
hidden layer
The weighted sum of the
neto inputs of the output node. -]
Number of nodes in the
Nh hidden layer -]
Ni Number of nodes in the
j : [-]
input layer
Discrete time instant -]
Ke Proportional gain [m3/min]
The integral decreasing .
K factor [pH/min]
Ko Gain of the process [PH X
min/m ]
Q Number of patterns in
training set -]
¥ges Desired output of the plant [-]
Vo Set point [-]
. The output of network N1 [-]
¥ L]
v The output of network N2 [-]
x2 []

Y Output variable -]
Sgn Sigmund function [-1
S Laplacian variable [-1
Slope of the tangent of the
S | PRC method -

Tcl(s) | Transfer function of close
loop -]
T Time [min]
tq Time delay [min]
\Y; Volume of tank [m?]
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