              Reservoir Operation by Artificial Neural Network Model
                                 ( Mosul Dam –Iraq, as a Case Study)
Thair S.K.1                                                                       Ayad S. M.2 
University of Technology,                                              Al-Anbar University,
Building and construction Eng. Dept.                          Civil Engineering Dept
 Baghdad-Iraq; 	                        Baghdad-Iraq 
 THSHKHMA@YAHOO.COM                              AYAD_ENG2001@YAHOO.COM
Abstract:
    Reservoir operation forecasting plays an important role in managing water resources systems. This is especially the case for reservoirs because of the among all man-made hydraulic structures in river basins, reservoirs take a key role in redistributing water more evenly both in space and time to prevent damage and increase benefits, either in an economical or in ecological and societal manner. In recent years research on Artificial Neural Networks (ANN) proved to be most convenient and easy tool for modeling and analysis of non-linear events. For the reservoir operation, there is a need to find optimal solution to release water downstream and to keep maximum storage within the reservoir with no or minimum downstream damage during flood peak. ANN model was applied for Mosul-Dam reservoir which locates on Tigris River _Iraq with the objectives of water resources development and flood control. Feed-forward multi-layer perceptions (MLPs) are used and trained with the back-propagation algorithm, as they have a high capability of data mapping. The data set has a record length of 23 years covering (1990-2012).The Input data were Inflow (It), Evaporation (Et), Rainfall (Rt), reservoir storage (St) and Outflow (Ot).The data were divided into two parts, the first part that has a data for training and testing ANN Model. The remaining data were used for validation. The data set with simulated release for monthly duration was used to Model ANN.  The best convergence after more than 1000 trials was achieved for the combination of inflow (It), inflow (It-1), inflow (It-2), Evaporation (Et), reservoir storage (St), Rainfall (Rt), outflow (Ot-1) and outflow (Ot-2) with error tolerance, learning rate, momentum rate, number of cycles and number of hidden layers as 0.001, 1, 0.9,50000 and 9 respectively. The coefficient of determination (R2) and MAPE were (0.972)
and ( 17.15 ) respectively. The results indicate that the Inflow(It) and Outflow(Ot-1) had the most significant effect on the predicted outflow of the reservoir with a relative importance of 21.80 and 18.56 respectively, followed by Inflow(It-1), Inflow(It-2) and Evaporation (Et), Storage (St) and Rainfall (Rt), with a relative importance of 13.71, 13.28, 11.34, 10.84 and 10.43 % respectively.  The results of ANN models for the training, testing and validation were compared with the observed data. The predicted values from the neural networks matched the measured values very well. The application of ANN technique and the predicted equation by using the connection weights and the threshold levels, assist the reservoir operation decision and future updating, also it is an important Model for finding the missing data. The ANN technique can accurately predict the monthly Outflow.
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1-Introduction:
    Reservoir operation is a complex problem that involves many decision variables, multiple objectives as well as considerable risk and uncertainty as in [1]. In addition, the conflicting objectives lead to significant challenges for operators when making operational decisions. Traditionally, reservoir operation is based on heuristic procedures, embracing rule curves and subjective judgments’ by the operator. This provides general operation strategies for reservoir releases according to the current reservoir level, hydrological conditions, water demands and the time of the year.
     Applying optimization techniques for reservoir operation is not a new idea. Various techniques have been applied in an attempt to improve the efficiency of reservoirs operation. These techniques include Linear Programming (LP); Nonlinear Programming (NLP); Dynamic Programming (DP); Stochastic Dynamic Programming (SDP); and Neural Networks as in [2]. In operation study the aim is to optimize the reservoir volume (that is storage) for abstracting sufficient amount of water from the dam reservoir. The monthly inflow of the reservoir is the main data series. It is better to have a data record length as long as possible. In addition to the monthly inflows, the monthly evaporation losses are another main data as in [3].
    Many researchers have applied ANN to model different complex hydrological processes. The ANN methods have good generalization efficiency and are commonly used in practical hydrologic projects. Even when there are missing data values, the ANN methods can be applied to aid in the completion of missing hydrological records as in [4]. Reference [5] described how the new prediction technique ANN and optimization technique GA applied to the reservoir operation especially in the flood period. The ANN technique used is based on Multilayer Perception Network and Back-propagation learning typed while GA technique is based from Natural Selection and natural genetics concepts. The application of both techniques to the Pasak Jolasid Reservoir found that the ANN technique can accurately predict the inflow for 7 day in advance with the accuracy of 70 % and GA technique can reduce the overflow during the flood peak reasonably under the determined reservoir rule curve. Reference [6] used Artificial Neural Network (ANN) for inflow forecasting of reservoir up to the next 12 hours. Numerical weather forecasting information (RDAPS), recorded rainfall data, water level of upstream dam and stream gauge site, and inflow of the current time are employed as input layer’s training values, and target value is +3, +6, +9, and +12 hours later inflow to Hwacheon reservoir in South Korea. Comparison result between ANN with RDAPS and without RDAPS showed that RDAPS information is useful for forecasting inflow of reservoir. He concluded that All of these two models showed good performance comparing with the observed records and The performance of ANN model is largely affected by a method of selecting training data sets, and it is also important to maintain accuracy and reliability of training process through verification and calibration processes. They used the parameters of Rainfall (Rt) m3, water level (ht) m and Inflow (It). Reference [7]  determined the best model using historical data to predict reservoir inflow one month ahead based on the different techniques of Neural Network. The methods were used to predict inflow in the Majalgaon Reservoir, Jayakwadi Project Stage-II, and Maharashtra, India. The modeling results indicates that reasonable prediction accuracy was achieved for most of model for one month ahead forecast with correlation greater than 0.94. When compared, a 2-4-1 Time-lag Recurrent Network with 2-lag has produced a better performance with correlation co-efficient greater than 0.99. Reference [8] developed The Neural Network model to classify the data that in turn can be used to aid the reservoir water release decision. In this study neural network model 8-23-2 has produced the acceptable performance during training, validation and testing. He concluded that the window sliding has been shown to be a successful approach to model the time delays, while neural network was shown as a promising modeling technique. They used parameters of reservoir water level (ht) m, river water level (ht) m, inflow (It) m3/sec, No. of gate size of opening, opening duration (T). Reference [9] carried out management of  hydropower reservoirs along river Niger by forecasting its future storage using Artificial Neural Network (ANN) model. This helps in planning on how it can be fully optimized for hydropower generation, domestic and industrial uses, irrigation and other uses. The networks were trained with monthly historical data of  Jebba and Kainji hydropower reservoirs’ inflow, outflow (release), storage and the evaporation loses. The trained networks yielded 95% and 97% of good forecast of training and testing set for Jebba, and 69% and 75% respectively for Kainji reservoir. The correlation coefficients of 0.64 and 0.79 were obtained for Jebba and Kainji reservoirs respectively. This study is devoted to suggest new scenarios for the operation of reservoirs. The Artificial Neural Network was used for analysis old data and forecasting. The computer program Artificial Neural Network package is used for this purpose .Input and Output data of more than twenty years for AL Mosul reservoir as a case study were analyzed and the results were compared with previously monthly operation.

2-Material and Methods:
   Study Area:
    In this study, ANN model was applied for Al –Mosul reservoir located in Mosul Governorate(Iraq) on Tigris River, 50 Km North of Mosul Town, 80km from the Turkish borders .The scheme included the dam and appurtenant structures, a regulating dam located at the downstream and a pumped storage scheme for additional hydropower generation, Fig. 1.
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                                  Figure 1.  Mosul Dam Scheme Layout

Input and Output Parameters:
    It is generally accepted that data of five parameters have the most significant impact on the dam reservoir operation, and are thus used as the ANN model inputs. These include the following:-
1-Inflow rate (m3/s)
2-Storage (m3) , Evaporation (m3) and Rainfall (m3) ( using area-surface water elevation curve of the Mosul reservoir , the water volume of storage ,evaporation and rainfall can be calculated by multiplying the area by the water depth, evaporation depth and rainfall depth respectively at each month). 
   The output of the model is monthly Outflow (m3/s). These data were collected from [10] . The data set has a record length of 23 years covering between  (1990-2012).  
    
  ANNs Technique:
    ANN’s were inspired by and mimic the biological nervous system. They offer an alternative computing paradigm closer to reality, independent of pre-established rules or models. To fully understand how an ANN works, let’s first get familiar with its components as in [11] . The very basic element of an ANN is called Neuron. Neurons are elemental processors that execute simple tasks. They process the information it receives by applying a mathematical Activation Function that is usually non-linear, to its net input, producing an Output Signal as a result. A Neuron’s net input is basically a weighted sum of all of its inputs. As the biological nervous system, Neurons are connected through Links, which transmit the signals among them. Each Connection Link has an associated weight (W ij)that, in turn, modifies the signal transmitted. Abroad class models that mimic functioning inside the human brain. There are various classes of NN models and they are different from each other depending on :i Problem types (prediction, classification, clustering);ii) Structure of the model ;iii) Model building algorithim.
    For this discussion we are going to focus on, Feed – forward Back Propagation Neural Network which is used for prediction and classification problems as in [12]  , [13], [14] and [15]. Often, Neurons are grouped in so-called Slabs. Similarly, Slabs are grouped in Layers. Usually, an ANN comprises three layers: Input, Middle and Output Layer. The Input Layer receives information (set of features representing the pattern) from the environment or surroundings and transmits it to the Middle Layer. At this point, it is important to clarify that every Neuron located in the Input Layer is interconnected with all of the Neurons in the Middle Layer, such that the information processing task is carried out parallel and simultaneously. The same is true for the interconnection between the Middle and Output Layer. It is often said that the Middle Layer is the one that actually analyzes or executes the mapping of the information supplied to the ANN. This layer carries out the pattern recognition task among all input information by re-coding it to generate an appropriate internal representation, so that the essential features of the patterns are retained. The Output Layer receives this analysis and converts it into a meaningful interpretation to communicate it back to the environment. A simplistic schematic of an ANN is depicted in Figure 2.
[image: ]
                                 Figure 2. Typical Structure of ANN
Three properties characterize an ANN:
  1. Architecture: the connectivity pattern among neurons
  2. Algorithm: its method of determining the weights on the connections
  3. Activation Function: a mathematical function that maps a neuron’s net input

in to its output value. (Sigmoid (logistic) Function (   ), the hyperbolic tangent (tanh) function, the sine or cosine function and the linear function ). The model parameters comprise of many transfer functions, learning rate of (0.0-1.0) and momentum rate of (0.0-1.0) . The default values of learning and momentum rates are 0.2 and 0.8 respectively.

   Division of data
   The data are randomly divided into three sets (training, testing and validation).In total, 80% of the data are used for training and 20% are used for validation. The training data are further divided into 70% for the training set and 30% for the testing set. These subsets are also divided in such a way that they are statistically consistent and thus represent the same statistical population. To examine how representative the training, testing and validation sets are with respect to each other, T-test and F-test are carried out. These results indicate that training, testing and validation sets are generally representative of a single population as in [16] . The data base used for the ANN model comprises total of (276) individual cases. Ranges of the data used for the input and output variable are summarized in Table 1. 









                Table 1 : Ranges of the data used for the ANN model
	Model variables
	Minimum value
	Maximum value

	INFLOW, m3/sec
	78
	1715

	STORAGE, m3
	3.32E+09
	1.09E+10

	EVAPORATION,  m3
	4694879
	1.46E+08

	RAINFALL, m3
	0
	36419980

	OUTFLOW, m3/sec
	115
	1947



  Scaling of data
  The input and output variables are pre-processed by scaling them between (0 and 1), to eliminate their dimensions and to ensure that all variables receive equal attention during training. The simple linear mapping of the variables extremes is adopted for scaling, as it is the most commonly used method as in [17] . As part of this method, for each variable X with minimum and maximum values of Xmin and Xmax respectively, the scaled value Xn is calculated as in (1):
[image: ]
	                                                                                         (1)

Model architecture, optimization and stopping criteria:
   One of the most important and difficult tasks in the development of ANN models is determining the model architecture (i.e. the number and connectivity of the hidden layer nodes). A network with one hidden layer can approximate any continues function, provided that sufficient connection weights are used.  Consequently, one hidden layer is used in this research. Using the data for Mosul Reservoir, the combination of Inflow (It), Storage (St), Evaporation (Et), Rainfall (Rt).as an Input and Output (Ot) as an Output, was considered for the initial training. This combination was trained with end to the tolerance and the number of cycles as 0.001 and 50000 respectively.   The general strategy adopted for finding the optimal network architecture and internal parameters that control the training process is as follows: a number of trials more than 1000 is carried out using the default parameters of the software used with one hidden layer and 1,2,3,…….,10 hidden layer nodes (13 node is the upper limit of hidden layer nodes).   
   The network that performs best with respect to the testing set is retrained with different combinations of momentum terms (0-1), learning rates (0-1) and transfer functions in an attempt to improve model performance, since the back-propagation algorithm uses a first-order gradient descent technique to adjust the connection weights, it may get trapped in a local minimum if the initial starting point in weight space is unfavorable. Consequently, the model that has the optimum momentum term, learning rate and transfer function is retrained a number of times with different initial weights until no further improvement occurs. Using the default parameters of the software, a number of networks with different numbers of hidden layer nodes is developed and results are shown graphically in Figure 3 summarized in Table 2 for ANN models 


Figure 3.  Performance of the ANN models with different hidden layer
    nodes (Learning rate = 0.2 and Momentum term = 0.8)
   It can be seen from Figure 3 that the number of hidden nodes has little impact on the predictive ability of the ANN model. This is to be expected, as cross-validation is used as the stopping criteria. Figure 3 shows that the network with 10 hidden layer nodes has the lowest prediction error for training set. However, it is believed that the network with 10 hidden layer nodes is considered optimal for the validating set, as its prediction error is not far from the network with 6, 8 and 10 hidden layer nodes coupled with smaller number of connection weights. It can also be seen from Table 2 that the results obtained for model during validation are generally consistent with those obtained during training and testing (the error difference in RMSE being 102.81 and 262.13 respectively), indicating that the model is able to generalize within the range of the data used for training, and can thus be used for predictive purposes. 
   The effect of the internal parameters controlling the back-propagation (i.e. momentum term and learning rate) on model performance is investigated for the model with seven hidden layer nodes resulting in Table 2. The effect of the momentum term on model performance is shown graphically in Figure 4. It can be seen that the performance of the ANN model is relatively insensitive to momentum terms, particularly in the range 0.1 to 0.6. 
   Figure 5, shows that the effect of different learning rates on the model performance. It can be seen that the performance of the ANN model is relatively sensitive to learning rates in the range 0.1 to 0.4 then the prediction errors slightly increase to certain value at 78.30,for the training set. The figure indicate that the performance relatively insensitive to learning rates after value of  0.4. Thus, the optimum values for momentum term and learning rate used is 0.80 and 1.0 respectively. The effect of using different transfer functions is shown in Table 2. It can be seen that the performance of ANN models is relatively insensitive to transfer functions although a slightly better performance is obtained when the linear transfer function is used for input layer, sigmoid transfer function for the hidden layer and the output layer.
 (
Table  2  .
Structure and Performance of ANN models developed for Al-Mosul Reservoir Dam Operation
)
 (
T = Training, S= Testing, V = Validation                                                                                                                                                        
)[image: ]


	
Figure 4. Effect of various momentum terms on ANN performance
 (Hidden nodes = 10 and learning rate = 0.2)
	
Figure 5. Effect of various learning rates on ANN performance
(Hidden nodes = 10 and Momentum term = 0.8)


 
3- Results and Discussion:
   It was observed that the performance of ANN is good for learning rate between (0.8-1.0) and the momentum rate of (0.8) and to get the optimized weights for the neural network model, the following combinations of inputs were tried as described below:
	· Scenario 1(I(t) O(t) S(t) E(t) R(t))
· Scenario 2 (I(t-1) I(t) O(t) S(t) E(t) R(t))
· Scenario 3(I(t-2)I(t-1) I(t) O(t) S(t) E(t) R(t))
· Scenario 4(I(t-2)I(t-1) I(t) O(t-1) S(t) E(t) R(t))
· Scenario 5(I(t-2)I(t-1) I(t) O(t-1) O(t-2) S(t) E(t) R(t))


The results of ANN Model under different operation scenarios are shown in Table 3.

  Table 3.  Results of ANN training for dam reservoir operation.
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   Tables 3, shows results at the training for different scenarios for Mosul reservoir operation. It was noticed that the best convergence was achieved for the scenario of (I(t-2)I(t-1) I(t) O(t-1) O(t-2) S(t) E(t) R(t)) with the error tolerance, learning rate, momentum rate, neurons in the hidden layers, coefficient of determination and the sum of squared error as (0.001, 1, 0.9, 9, 0.972 and 78.783) respectively.
   In an attempt to identify which of the input variables has the most significant impact on the Dam Reservoir Operation, a sensitivity analysis is carried out on the ANN model (model MDO-30). A simple and innovative technique proposed as in [18]  , is used to interpret the relative importance of the input variables by examining the connection weights of the trained network. For a network with one hidden layer, the technique involves a process of partitioning the hidden output connection weights into components associated with each input node. The results indicate that the Inflow(It) and Outflow(Ot-1) had the most significant effect on the predicted the Dam Reservoir Operation with a relative importance of 21.80 and 18.56 respectively, followed by Inflow(It-1), Inflow(It-2) and Evaporation (Et), Storage (St)and Rainfall (Rt), with a relative importance of 13.71, 13.28, 11.34, 10.84 and 10.43 % respectively. The results are also presented in Figure 6.
 
                      Figure 6. Relative importance for all input parameters
The small number of connection weights obtained for the optimal ANN model (model MDO-30) enables the network to be translated into relatively simple formula. To demonstrate this, the structure of the ANN model is shown in Figure7, while  connection weights and threshold levels are summarized in Table 4. Using the connection weights and the threshold levels shown in Table 4, the predicted Outflow of reservoir dam operation can be expressed as in (2):

                                                                                                                         (2)
where:









In matrix notation, the equation 2 can be written as in (3):
                 
               {x}={θ}+[w]{I}                                                                                              (3)
Where: Where : I1=[It] Inflow (m3/sec); I2=[It-1] Inflow (m3/sec) initial void ratio; I3=[It-2] Inflow (m3/sec);I4= [Ot-1] Outflow (m3/sec); I5=[St] Storage (m3); I6=[Et] Evaporation (m3) and I7=[Rt] Rainfall (m3) .













                            Figure 7. Structure of the ANN optimal model.


                                 Table 4.  Weights and threshold 
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    It should be noted that, before using Equation 3, all input variables (i.e. [It] Inflow (m3/sec), [It-1] Inflow (m3/sec) initial void ratio, [It-2] Inflow (m3/sec),  [It-1] Outflow (m3/sec), [St] Storage (m3), [Et] Evaporation (m3) and [Rt] Rainfall (m3) ) need to be scaled between 0.0 and 1.0 using (1) and the data ranges in the ANN model training (see Table 1). It should also be noted that the predicted value of Outflow (m3/sec) obtained from (2) is scaled between 0.0 and 1.0 and in order to obtain the actual value this collapse potential has to be re-scaled using (1) and the data ranges in Table 1. The procedure for scaling and substituting the values of the weights and threshold levels from Table 4, Equations 2 and 3 can be rewritten as in (4):
                                                                                                                                              (4)
And
)                                                             (5)
                                                               (6)
                                                                     (7)
                                                               (8)
                                                                            (9)
                                                                                               (10)
                                                                           (11)
                                                                         (12)
                                                                        (13)
   Equation (4) is long and complex because it contains four independent variables. On the other hand, it can predict accurately the outflow of Mosul reservoir (Figure 9).The correlation coefficient and MAPE were 0.962 and 17.15% respectively. MAPE is the mean absolute percentage error as in [19] ,which was less than 30%.The equation length depends on the number of nodes in the input and hidden layers.
   To assess the validity of the derived equation for the dam reservoir operation, the equations can be used to predict these values on the basis of all, training, and validation data sets used. Then for evaluating resulted ANN model have been compared with those from the simulated mode. The predicted values of the Outflow, are plotted against the   measured (observed) values, in Figures (8 and 9), respectively for the three data sets. It is clear from Figures (8 and 9).That the generalization capability of ANN techniques for any data set used within the range of data is used in training the ANN. The models show good agreement with the actual measurements.









        Figure 8. Comparison of predicted and measured values of outflow 
                     ,Mosul resevoir-Iraq.  
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Figure 9. Predicted vs. measured values of outflow, ( Mosul reservoir). 
4-Conclusions:
    In this study Artificial Neural Networks (ANNs) are used in an attempt to estimate the optimal formula that used for operation the reservoir. Feed – forward multilayer perceptions (MLPs) are used and trained with the back- propagation algorithm, for forecasting the monthly outflow (Ot) of Mosul reservoir and for a period from (1990 – 2012). An appropriate architecture of ANN model was found by trial and error (more than 1000 trials). To get the optimized weights for the ANN model, five scenarios were used, Based on the results of this study, It can be concluding the following:
 -The better results were obtained by increasing the number of neurons in the hidden layer which increased training times.
-In model architecture, larger values of learning rate and momentum rate gave larger training, testing and validation errors.
-Convert the Evaporation and Rainfall data to volume units, gave a significant impact on the outputs.
-The most effective transfer function in the hidden layers was the sigmoid function.
-The combination (scenario) of inflow (It,It-1,It-2), outflow (Ot-1), storage (St), evaporation (Et) and rainfall (Rt) was found to be the best for the reservoir operation with a coefficient of determination (0.972). This scenario improved the operation of the reservoir.
-The application of ANN technique to Mosul-Reservoir can accurately predict the monthly Outflow (release flow) and assist the reservoir operation decision and future updating.
-The predicted formula of Output flow from Mosul Reservoir can be used efficiently for estimating the missing data.
-During the dividing the available data into their subsets, to represent it statistically consistent and population, high efforts and long times were used.
-ANN model can be always be updated to obtain better results by using available new data and the real values of learning and momentum rates.
- The input for the long-term optimization in ANN model must be used as a daily data to show the peak events.
     A further issues that needs to be given some attention in the future for prediction of outflow from reservoir by ANN model, are to include seepage from the reservoir and the runoff of the catchment area around the reservoir boundary. In the development of ANN model, the output formula must be included in the model output due to high efforts and complexity which were used to predict the mathematical formula for the Outflow from the reservoir and further studies must be achieve to develop a program for the randomly dividing the data set into training, testing and validation processes which were made manually, so the constraint should be simplified. 
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Validating	0.1	0.2	0.30000000000000032	0.4	0.5	0.60000000000000064	0.70000000000000062	0.8	0.9	0.95000000000000062	173.95721260017987	185.20014224358732	197.14264316568361	208.21539918181358	216.80070665104876	222.30815007033607	227.42438884927267	251.14216508245678	297.26720645645327	349.38199969542177	Testing	0.1	0.2	0.30000000000000032	0.4	0.5	0.60000000000000064	0.70000000000000062	0.8	0.9	0.95000000000000062	236.39480025760545	234.51159855590581	229.87375717585752	225.72269102804211	225.84963920541401	231.7777905357693	244.64275002806707	271.03333943084493	293.06615502502569	292.94004644987433	Training	0.1	0.2	0.30000000000000032	0.4	0.5	0.60000000000000064	0.70000000000000062	0.8	0.9	0.95000000000000062	139.64937374151714	134.46984854255581	128.94159879706217	123.37235759271422	118.91835906248129	115.40163066664142	111.38906977860722	103.09659729601844	89.264956620348642	81.905122261388129	Momentum Term
RMSE of Data set
Validating	0.1	0.2	0.30000000000000032	0.4	0.5	0.60000000000000064	0.70000000000000062	0.8	0.9	1	224.16500684815921	254.23019742947	302.76884775788011	301.9993718207167	278.9154071635013	297.01149772389795	281.25431718189094	354.86033568023134	353.20252849096568	243.58285070136012	Testing	0.1	0.2	0.30000000000000032	0.4	0.5	0.60000000000000064	0.70000000000000062	0.8	0.9	1	259.19231512447186	290.91458316531163	312.40732517744897	306.29911220530181	295.29994834586427	308.06187171710565	298.01480799025768	316.01182674686174	302.70709399664463	324.21465565248423	Training	0.1	0.2	0.30000000000000032	0.4	0.5	0.60000000000000064	0.70000000000000062	0.8	0.9	1	115.42142340038393	103.09659729601844	92.699760333562779	88.676107653357448	89.739210812779078	85.069864759027624	83.754589870642363	79.872747970162337	79.619226892111001	78.300098827497408	Learning Term
RMSE of Data set
Inflow I(t)	Inflow I(t-1)	Inflow I(t-2)	Outflow O(t-1)	Storage S(t)	Evaporation E(t)	Rainfall R(t)	21.802019819829667	13.713039109471767	13.286746912503476	18.56989075469329	10.437752207329074	11.344177524130448	10.846373672041953	PARAMETERS
RELATIVE IMPORTANCE %
ANN model	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	343.33526901718699	407.56560889399901	354.26751862738899	190.24299999999999	165.32100000000094	381.71030817669669	381.97599999999869	396.91431217392898	599.08809993087709	355.63499820344902	379.05738741547469	363.43270922082195	214.23099999999999	210.27799999999999	1134.451	259.39903153970408	295.67671628487523	420.182828948713	312.48799999999869	446.14257302977842	211.911	144.10399999999998	180.29899999999998	355.23099999999869	312.42599999999823	1012.3969999999994	415.48650993381199	499.00127886575098	420.13285420858199	280.35399999999993	346.88511367367869	944.18602718223246	281.03768310797898	469.56811539333108	435.65100000000001	303.04450975725263	190.29599999999999	345.13746865155201	275.04257389095778	238.18620990880001	378.18900000000002	749.09925471099996	1201.2939999999999	377.52799999999894	829.23400000000004	442.56170435630469	201.20217260154476	415.81221202767699	739.05890070516307	314.72199999999754	493.06828171524302	1347.43549634751	934.61088530561403	922.15643896967993	164.523	97.774999999999991	107.391471169361	849.64567599779195	1956.3869999999999	608.99303608318155	617.96345998820198	1709.299	1192.5619999999999	285.454078818006	384.90618047689065	236.13318215482406	751.54276567520799	575.49423543812804	845.65174446932554	823.49699999999996	276.93299999999869	217.34900000000002	151.28900000000002	301.48493888521864	1061.2423743142499	1186.3762693441711	298.346	339.06259742383997	1189.1164406697999	1456.9778569006689	418.584321219407	876.399	504.25290586430998	1165.2950000000001	512.62199999999996	557.0912063333999	681.38599999999997	493.21909062987208	234.35400000000001	288.35500000000002	528.59060177502897	472.72258615662196	608.33056432236197	312.673	483.33445135602398	493.40015975878174	495.50194129903178	470.63411469786598	401.26651410987699	402.66858403825501	489.31923920493801	423.68618617257363	597.10722196529548	626.42615405156198	665.98199999999997	518.65475128624803	312.93599999999748	662.06839289975846	672.17110716805803	638.74768968367789	699.21890350272304	593.95760977102248	477.84063273737502	484.11766086922836	506.72552594237402	450.76038751287899	466.14079181352565	451.93917166212174	478.81078663396539	617.11430052430353	627.226389381069	547.43723950041749	457.98132479493393	600.99014146575291	552.93393675047605	664.62928947684804	552.69765001569999	616.32468809880447	591.15934583920603	484.22479253457004	441.18633670155856	389.15651410573008	496.16350595662323	419.52233820487777	480.35451216682998	430.51682247196698	559.06439038785595	627.86077955005555	552.79485665700349	564.71183806780402	401.38599999999963	549.044127796412	624.18392702653853	480.80445051841178	507.32376841686403	560.98455392904305	483.67505454867666	477.06971624431969	327.97599999999869	494.05092714274178	478.51782557363498	446.79718152004801	516.5053793702989	451.20686297263069	550.37199999999996	538.4368505545981	440.66606583173478	427.74357430833197	556.47427985068805	446.97539951073469	385.21640119699993	553.52936398199699	527.01639716640705	317.30387732899601	520.59591335142704	359.89285759929396	423.33350198927644	393.85228604707697	437.72215718820189	78.277999999999992	388.43468057788101	366.89664780234801	462.03654070605393	390.94109599177864	310.33682811150697	435.75348462301974	377.87341301824199	371.99447075001194	359.17486889258402	404.3219352962056	414.97269799415102	234.875	301.10997504538301	381.63640034318593	347.61180607338201	336.84895097347396	154.07268862260599	442.10818579452808	351.69118345985299	369.20470389213301	299.47769233727303	315.65987376949209	155.72200000000001	339.360789431444	410.49054685580899	396.34347243209396	375.67638532477798	312.605722094675	248.37800000000001	347.27021922833399	403.82157118586298	254.65859069863799	266.49192401575397	75.1127017713859	Measured values	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	365	341	440	185	142	295	370	305	570	420	344	305	210	200	1150	235	355	389	302	495	178	157	220	305	330	985	385	410	455	205	200	1100	241	465	386	280	275	185	212	140	425	740	1070	325	725	545	280	225	725	200	485	1398	865	880	150	132	115	875	1947	680	520	1582	1020	285	510	310	635	670	793	874	285	176	150	208	925	1112	300	430	1130	1360	220	850	500	1285	590	573	761	560	225	295	418	590	745	420	490	487	415	260	425	405	495	372	592	801	690	322	385	529	531	525	605	588	310	395	305	410	425	430	367	626	649	670	380	421	580	648	500	640	567	369	353	347	450	400	419	400	625	630	500	403	400	571	597	481	590	554	367	435	307	500	425	450	428	601	580	440	404	365	418	524	410	490	495	350	335	260	435	450	428	78	460	525	345	415	400	425	480	445	455	500	555	220	245	400	435	375	78	304	445	257	225	171	150	350	440	400	477	390	207	242	350	282	357	78	TIME (MONTH)
MONTHLY OUTFLOW (M3/SEC)
Measured values	343.33526901718699	407.56560889399901	354.26751862738899	190.24299999999999	165.32100000000094	381.71030817669669	381.97599999999869	396.91431217392898	599.08809993087709	355.63499820344902	379.05738741547469	363.43270922082195	214.23099999999999	210.27799999999999	1134.451	259.39903153970408	295.67671628487523	420.182828948713	312.48799999999869	446.14257302977842	211.911	144.10399999999998	180.29899999999998	355.23099999999869	312.42599999999823	1012.3969999999994	415.48650993381199	499.00127886575098	420.13285420858199	280.35399999999993	346.88511367367869	944.18602718223246	281.03768310797898	469.56811539333108	435.65100000000001	303.04450975725263	190.29599999999999	345.13746865155201	275.04257389095778	238.18620990880001	378.18900000000002	749.09925471099996	1201.2939999999999	377.52799999999894	829.23400000000004	442.56170435630469	201.20217260154476	415.81221202767699	739.05890070516307	314.72199999999754	493.06828171524302	1347.43549634751	934.61088530561403	922.15643896967993	164.523	97.774999999999991	107.391471169361	849.64567599779195	1956.3869999999999	608.99303608318155	617.96345998820198	1709.299	1192.5619999999999	285.454078818006	384.90618047689065	236.13318215482406	751.54276567520799	575.49423543812804	845.65174446932554	823.49699999999996	276.93299999999869	217.34900000000002	151.28900000000002	301.48493888521864	1061.2423743142499	1186.3762693441711	298.346	339.06259742383997	1189.1164406697999	1456.9778569006689	418.584321219407	876.399	504.25290586430998	1165.2950000000001	512.62199999999996	557.0912063333999	681.38599999999997	493.21909062987208	234.35400000000001	288.35500000000002	528.59060177502897	472.72258615662196	608.33056432236197	312.673	483.33445135602398	493.40015975878174	495.50194129903178	470.63411469786598	401.26651410987699	402.66858403825501	489.31923920493801	423.68618617257363	597.10722196529548	626.42615405156198	665.98199999999997	518.65475128624803	312.93599999999748	662.06839289975846	672.17110716805803	638.74768968367789	699.21890350272304	593.95760977102248	477.84063273737502	484.11766086922836	506.72552594237402	450.76038751287899	466.14079181352565	451.93917166212174	478.81078663396539	617.11430052430353	627.226389381069	547.43723950041749	457.98132479493393	600.99014146575291	552.93393675047605	664.62928947684804	552.69765001569999	616.32468809880447	591.15934583920603	484.22479253457004	441.18633670155856	389.15651410573008	496.16350595662323	419.52233820487777	480.35451216682998	430.51682247196698	559.06439038785595	627.86077955005555	552.79485665700349	564.71183806780402	401.38599999999963	549.044127796412	624.18392702653853	480.80445051841178	507.32376841686403	560.98455392904305	483.67505454867666	477.06971624431969	327.97599999999869	494.05092714274178	478.51782557363498	446.79718152004801	516.5053793702989	451.20686297263069	550.37199999999996	538.4368505545981	440.66606583173478	427.74357430833197	556.47427985068805	446.97539951073469	385.21640119699993	553.52936398199699	527.01639716640705	317.30387732899601	520.59591335142704	359.89285759929396	423.33350198927644	393.85228604707697	437.72215718820189	78.277999999999992	388.43468057788101	366.89664780234801	462.03654070605393	390.94109599177864	310.33682811150697	435.75348462301974	377.87341301824199	371.99447075001194	359.17486889258402	404.3219352962056	414.97269799415102	234.875	301.10997504538301	381.63640034318593	347.61180607338201	336.84895097347396	154.07268862260599	442.10818579452808	351.69118345985299	369.20470389213301	299.47769233727303	315.65987376949209	155.72200000000001	339.360789431444	410.49054685580899	396.34347243209396	375.67638532477798	312.605722094675	248.37800000000001	347.27021922833399	403.82157118586298	254.65859069863799	266.49192401575397	75.1127017713859	365	341	440	185	142	295	370	305	570	420	344	305	210	200	1150	235	355	389	302	495	178	157	220	305	330	985	385	410	455	205	200	1100	241	465	386	280	275	185	212	140	425	740	1070	325	725	545	280	225	725	200	485	1398	865	880	150	132	115	875	1947	680	520	1582	1020	285	510	310	635	670	793	874	285	176	150	208	925	1112	300	430	1130	1360	220	850	500	1285	590	573	761	560	225	295	418	590	745	420	490	487	415	260	425	405	495	372	592	801	690	322	385	529	531	525	605	588	310	395	305	410	425	430	367	626	649	670	380	421	580	648	500	640	567	369	353	347	450	400	419	400	625	630	500	403	400	571	597	481	590	554	367	435	307	500	425	450	428	601	580	440	404	365	418	524	410	490	495	350	335	260	435	450	428	78	460	525	345	415	400	425	480	445	455	500	555	220	245	400	435	375	78	304	445	257	225	171	150	350	440	400	477	390	207	242	350	282	357	78	MEASURED OUTFLOW M3/SEC
PREDICTED OUTFLOW M3/SEC
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151.6482 187.5364 118.6935 207.8472 292.0618 149.0685 0.832011 0.649646 0.708523 Sigmoid Sigmoid 0.8 0.2 1 MDO-1

126.2937 177.9249 105.3486 174.2932 251.7134 138.5275 0.818987 0.689152 0.754875 Sigmoid Sigmoid 0.8 0.2 2 MDO-2

147.3897 175.9864 98.84318 202.682 267.3862 127.2436 0.7445 0.637109 0.79875 Sigmoid Sigmoid 0.8 0.2 3 MDO-3

163.3056 171.4597 91.43576 236.5241 254.0664 113.4869 0.660573 0.702205 0.849129 Sigmoid Sigmoid 0.8 0.2 4 MDO-4

180.5199 175.7291 91.45256 244.9415 255.2291 114.6068 0.658825 0.705615 0.843294 Sigmoid Sigmoid 0.8 0.2 5 MDO-5

166.8243 180.9616 81.77307 244.7757 276.97 105.2233 0.690596 0.675638 0.870379 Sigmoid Sigmoid 0.8 0.2 6 MDO-6

184.4745 188.2193 78.26581 266.7243 280.9449 98.96607 0.590621 0.645388 0.884316 Sigmoid Sigmoid 0.8 0.2 7 MDO-7

169.5262 190.6071 84.25091 234.5857 277.7665 107.1655 0.67085 0.649185 0.862499 Sigmoid Sigmoid 0.8 0.2 8 MDO-8

159.7061 174.7034 82.17727 234.902 264.5187 104.0464 0.679481 0.687563 0.870679 Sigmoid Sigmoid 0.8 0.2 9 MDO-9

185.2323 176.7609 83.71258 239.7587 262.1358 102.8032 0.708651 0.693666 0.874975 Sigmoid Sigmoid 0.8 0.2 10 MDO-10

133.3609 171.9044 107.6813 173.9572 236.3948 139.6494 0.820979 0.724784 0.750209 Sigmoid Sigmoid 0.1 0.2 10 MDO-11

139.3689 171.6907 103.2721 185.2001 234.5116 134.4698 0.792982 0.729082 0.771184 Sigmoid Sigmoid 0.2 0.2 10 MDO-12

144.9935 169.9997 99.26814 197.1426 229.8738 128.9416 0.763171 0.74164 0.79213 Sigmoid Sigmoid 0.3 0.2 10 MDO-13

150.9862 167.2799 95.41591 208.2154 225.7227 123.3724 0.737697 0.753287 0.811721 Sigmoid Sigmoid 0.4 0.2 10 MDO-14

157.2674 165.2887 93.11745 216.8007 225.8496 118.9184 0.721849 0.755431 0.826396 Sigmoid Sigmoid 0.5 0.2 10 MDO-15

162.5215 165.2442 91.62604 222.3082 231.7778 115.4016 0.714825 0.746302 0.837528 Sigmoid Sigmoid 0.6 0.2 10 MDO-16

165.9277 168.8461 89.33078 227.4244 244.6428 111.3891 0.701881 0.723132 0.849887 Sigmoid Sigmoid 0.7 0.2 10 MDO-17

175.3693 183.0075 81.91133 251.1422 271.0333 103.0966 0.619557 0.662533 0.87377 Sigmoid Sigmoid 0.8 0.2 10 MDO-18

203.8248 195.6742 70.78433 297.2672 293.0662 89.26496 0.482312 0.613914 0.910229 Sigmoid Sigmoid 0.9 0.2 10 MDO-19

228.2162 206.9008 65.12247 349.382 292.94 81.90512 0.331336 0.611775 0.92749 Sigmoid Sigmoid 0.95 0.2 10 MDO-20

163.6546 193.7377 91.65329 224.165 259.1923 115.4214 0.715091 0.746345 0.837514 Sigmoid Sigmoid 0.8 0.1 10 MDO-21

177.4631 209.3256 81.91133 254.2302 290.9146 103.0966 0.617964 0.662533 0.87377 Sigmoid Sigmoid 0.8 0.2 10 MDO-22

206.0005 217.0581 72.62198 302.7688 312.4073 92.69976 0.463949 0.597554 0.900625 Sigmoid Sigmoid 0.8 0.3 10 MDO-23

206.0764 217.3798 70.24582 301.9994 306.2991 88.67611 0.481102 0.612932 0.910185 Sigmoid Sigmoid 0.8 0.4 10 MDO-24

191.3987 213.8537 69.74133 278.9154 295.2999 89.73921 0.562093 0.639571 0.906934 Sigmoid Sigmoid 0.8 0.5 10 MDO-25

194.2707 220.5372 66.09429 297.0115 308.0619 85.06986 0.503034 0.619116 0.915953 Sigmoid Sigmoid 0.8 0.6 10 MDO-26

184.2058 217.7619 64.89651 281.2543 298.0148 83.75459 0.538891 0.645415 0.91867 Sigmoid Sigmoid 0.8 0.7 10 MDO-27

229.6282 229.0255 61.4267 354.8603 316.0118 79.87275 0.289851 0.585219 0.926694 Sigmoid Sigmoid 0.8 0.8 10 MDO-28

236.378 226.5765 60.13358 353.2025 302.7071 79.61923 0.392479 0.634479 0.926587 Sigmoid Sigmoid 0.8 0.9 10 MDO-29

169.136 231.7804 58.35251 243.5829 324.2147 78.3001 0.624284 0.559589 0.928678 Sigmoid Sigmoid 0.8 1 10 MDO-30

187.4063 227.6013 74.8902 269.1452 318.8972 93.4096 0.6969 0.5102 0.9109 tanh tanh 0.8 0.2 10 MDO-31

200.5118 197.9830 73.3255 280.8069 279.6173 91.7585 0.5306 0.6269 0.9061 tanh Sigmoid 0.8 0.2 10 MDO-32

238.8813 208.9565 50.4552 358.9212 323.3781 67.0881 0.1086 0.5130 0.9483 Sigmoid tanh 0.8 0.2 10 MDO-33
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sum of 

squared error
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