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Overview

In the design of concrete mixes, three principal 

requirements for concrete are of importance:

• Quality

• Workability

• Economy 



Economy

Utilization of silica fume (SF) in concrete 
production: 

• reduction of environmental problems and 
hazards by proper SF disposal rather than 
dumping. This is critical with the huge amounts 
of SF production especially at industrialized 
countries.

• saving the limited landfill space with 
economical benefits.



Research objectives

• Silica fume utilization in concrete 

production instead of dumping it as a 

waste material

• Reduction of fine aggregate used in 

concrete production

• Predicting the strength using artificial 

neural networks



Cement

WaterAggregate
(coarse + fine)

Methodology

Cementitious Materials =

cement + silica fume

W/C = 0.50, 0.55, 0.60

Age = 7, 28, 56 days

Compressive strength

Silica Fume Percentages  0, 5, 10, 15 (of fine aggregate)



Experimental program

ASTM standards

• Materials

• Mix design

• Preparation and casting of samples

• Testing of samples



Portland cement

Property Results

Fineness (90-mm sieve) 8.3

Specific surface (m2/kg) 281

Normal consistency (%) 28

Vicat setting time (min)

Initial 145

Final 260

Specific gravity 3.15



Silica fume

Property Results

SiO2 Content (%) 90

Surface Area (m2/kg) 20,000

Specific gravity 2.2

Unit weight (kg/m3) 245

Fineness (45-mm sieve) 5.1



Grading aggregates

Fine aggregate Coarse aggregate

Size (mm)
Percent 

passing
Size (mm)

Percent 

passing 

4.75 97.06 25.00 100

2.36 82.70 19.00 98.84

1.18 69.00 12.70 74.54

0.60 41.00 9.50 46.26

0.30 29.03 4.75 1.02

0.15 8.09



Concrete mix design

w/c w/cm
SF

(%)

SF

(kg/m3)

C

(kg/m3)

CM

(kg/m3)

W

(kg/m3)

FA

(kg/m3)

CA

(kg/m3)

0.50

0.50 0 0

400

400

200

340

1360
0.48 5 17 417 323

0.46 10 34 434 306

0.44 15 51 451 289

0.55

0.55 0 0

400

400

220

340

1360
0.53 5 17 417 323

0.51 10 34 434 306

0.49 15 51 451 289

0.60

0.60 0 0

400

400

240

340

1360
0.58 5 17 417 323

0.55 10 34 434 306

0.53 15 51 451 289
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w/c=0.55
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w/c=0.60
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Need for modeling

• What if………..?

• Too many variables (strength, curing time, 

SF(%), FA, CA, w/c, etc.…..).

• Linear/nonlinear models failed to predict the 

behavior accurately (Ashteyat et al. 2012).

• Additional tests are costly, time and labor 

intensive.



Artificial neural networks

In
p
u
ts

Output

ANN: Many artificial neurons that are linked together 

according to a specific network structure. 

Transform the inputs into meaningful outputs.



Basic models 

of ANN

Interconnections Learning rules Activation function



ANN structure



Distribution of the data sets

Validation, 
15%

Training, 
70%

Testing, 
15%



Structure / performance of model

Model properties

Output Input Structure Function

F

W/C, R, P, 

W/CM, SF, 

C, CM, W, 

FA, CA, T

11-3-1 Tanh-Tanh

Model parameters

R2 MSE

0.9630 0.0003



Biases and connection weights (11-3-1)

N1 N2 N3 F

W/C 0.5169 0.6599 -0.4807

R 0.9067 -0.5552 0.5400

P 0.0790 -0.4035 -0.1915

W/CM -0.5330 -0.2054 -0.6107

SF 0.5718 0.4802 -0.2124

C 0.4128 -0.5978 0.3507

CM -0.5552 -0.7530 0.0458

W 0.3913 -0.1413 0.1097

FA 0.4591 -0.3856 -0.4945

CA -0.0117 0.0801 -0.1829

T 0.1732 0.1140 -1.5488

F -2.0374 -0.6912 -0.7412

Bias 0.2527 -1.0939 0.1474 0.6727



Predicted & experimental values

y = 0.9498x + 1.8419
R²  =0.963
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Summary and conclusions   (1/2)

• Strength benefits were up to 21.6% over control 
concrete (5% replacement level). 

• Concrete strength was acceptable for most 
structural applications and reinforced concrete 
construction.

• ANNs were employed feasibly for estimating 
concrete strength. 

• One hidden layer with three neurons was used 
in constructing the model (11-3-1).



Summary and conclusions   (2/2)

• Strength determination of silica fume concrete 
can be predicted accurately and reliably using 
the proposed ANN model (R2 = 96.3%, MSE = 
0.0003). 

• Model can always be calibrated to include a 
wider range of input variables.  

• Considering experimental laboratory tests to be 
cumbersome, expensive, and time intensive, 
the use of the proposed model can be a viable 
and powerful alternative for estimating the 
compressive strength of silica fume concrete 
easily and efficiently. 
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your attention.


