

Experimental investigation on CFRP-steel bond properties using ionic liquid

Buthainah N. Al-kharabsheh School of Engineering-Deakin University-Australia

Contents

✓ Introduction

\checkmark The Purposes of The Research

- ✓ Methodology
- ✓ Conclusion

Introduction

Concrete structures are facing many challenges due to many factors that may affect their durability and reduce strength of the concrete structure with time. Example:

- Continuous upgrading of service loads.
- The increase of the traffic volume as in bridges.
- Corrosion caused by the de-icing.
- Codes requirements and new load cases and conditions of loading.
- Errors in the mix design

Introduction

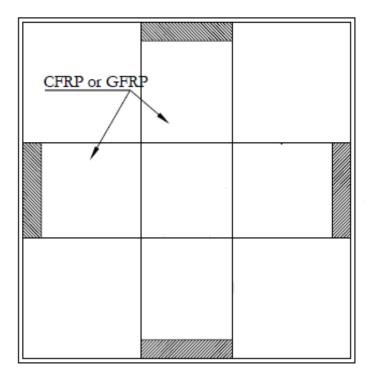
- The carbon fibre reinforced polymer (CFRP) is now considered an efficient material for strengthening and rehabilitation of the existing and the new infrastructure members.
- The reliability of this material depends on the integrity of the bonding agent to transfer stress between the retrofitted member and the CFRP laminate.
- The brittleness and poor toughness properties of the epoxy resin are responsible for the premature failure

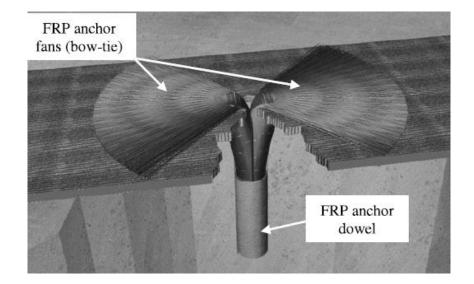
Common Types of FRP

Type of fibre	Modulus of elasticity (GPa)	Tensile strength (MPa)	500	Carbon
Carbon	240 - 640	2,500 - 4,000	(is) 400	
Aramid	120	3,000 – 4,000	\$ 300	Aramid
Glass	65 - 70	1,700 – 3,000	ty 500	E-Glass
Polyester	12 – 15	2,000 – 3,000	100	Gr 60 Steel
			0	0.005 0.01 0.015 0.02 0.025

FRP do not exhibit any plastic behaviour >> No bending capacity >> early deboding

Strain (in/in)




ineffective use to the FRP capacity.

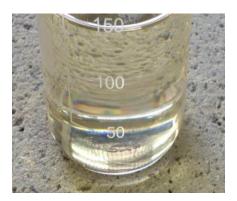
Techniques to Prevent De-bonding Failures RC Slabs Strengthened by CFRP

End Anchoring Technique

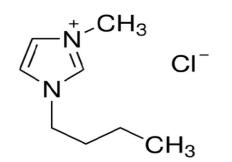
FRP Anchors.

The Research Goal

- ✓ The premature failure can be overcome by *Getting softer epoxy with reduced brittleness that allow CFRP/ concrete interface slip* than ordinary types used for FRP attachment.
- ➢ Ionic Liquid modified epoxy (IL+neat epoxy).
- Rubber modified epoxy.(rubber liquid + neat epoxy).


Methodology

- CFRP laminates with 1mm thickness.
- 3 series tests were conducted:
- The first series was prepared by attaching CF laminates to the hosting surface using neat epoxy.
- The second series was prepared by attaching CF laminate using 20% of IL.
- The third series was prepared by attaching CF laminate using 30% of IL.



Ionic Liquid (IL)

C₈H₁₅CIN₂ Ionic Liquid.

Chemical compound of $(C_8H_{15}CIN_2)$.

What is Ionic Liquid IL?

"ionic, salt-like materials" that are liquid below 100 ° C.

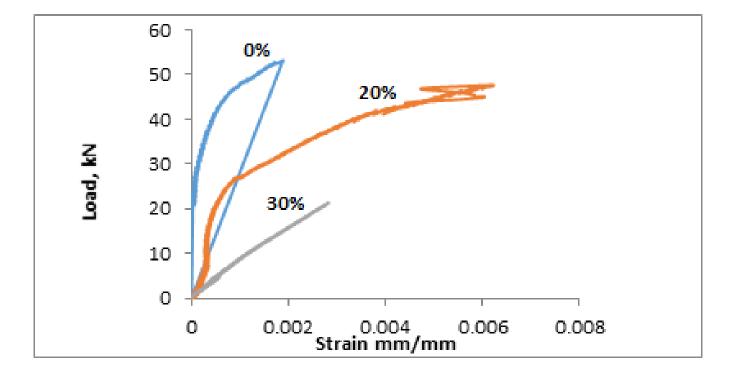
Physical properties:

It posses a transmittance to yellowish color.
At the room temperature , it exposes the liquid state, but in cold weather, it is solid.
The ionic liquid has no characteristic odor.
Friendly Environmental material.

CF laminate Attachment

Applying IL modified epoxy to the steel surface

Composite CFRP/Steel specimen



Pull-out test set up of CFRP/Steel specimen

CFRP Laminate debonding of 20%IL

Load-strain curves for bonding test of CFRP laminate and steel plate using different percentages IL

Test Results

Epoxy composition Ionic liquid / MBrace resin part A	Number of specimens	Average failure tensile load	Ductility Index
0:100	3	60	1
20:100	3	57	14.14
30:100	3	23	2.85

On going researches:

• Modifying the neat epoxy using rubber liquids:

Examples:

- ATBN
- CTBN

Conclusion

- Early debonding of CFRP is regarded as a main setback for their use in strengthening and retrofitting structure.
- Modifying the bonding agent composition an effective way to improve the behaviour of CFRP strengthened elements.
- IL improved the toughness and ductility of unmodified epoxy.
- 20% of IL is the best ratio in terms of higher ductility.

Thank you for your Attention