SYNTHESIS AND CHARACTERIZATION OF POLYOXOMETALLATES

Na₁₈[{α₂P₂W₁₇O₆₁]₂]_M, nH₂O (M = Co²⁺, Ni²⁺, Cu²⁺)

Nawel Nadjjⁱ, Robila Belghiche¹, Mostefa Abbessiⁱ

Département de Génie des procédés, Faculté des Sciences de l’Ingénieur
Université d’Annaba, BP 12,23000 Annaba,
E-mail: robuniv@yahoo.fr Tel/fax : 038 87 65 60

ABSTRACT

Three novel polyoxometallates Na₁₈ [M(α₂-P₂W₁₇O₆₁)]₂, (M = Co, Ni, Cu) have been synthesized from the Dawson lacunaria precursor Na₁₈[α₂P₂W₁₇O₆₁].20H₂O and characterized by elemental analysis, UV, IR and 31P NMR spectroscopy, and by an electrochemical method. The compounds consist of two [α₂P₂W₁₇O₆₁]¹⁵⁻ Dawson moieties linked through one metallic ion. The 31P NMR spectra exhibit one line for the three compounds at -12.991, -12.985 and -13.004 ppm respectively.

INTRODUCTION

Polyoxometalates (POMs) are metal-oxygen cluster species with versatile structures and interesting properties in medicine (Holczlajtner-Antunovic, 2004), catalysis (Ryul Park, 2010), and materials science (Coronado, 1998).

The ability to modify the redox and chemical properties of heteropolyanions by replacing one or more elements renders them particularly interesting in catalysis. The Dawson [P₂W₁₈O₆₂]⁶⁻ polyoxoanion may be hydrolyzed into lacunary species containing one α₂[P₂W₁₇O₆₁]¹⁰⁻, or more lacuna (Contant, 1981; Massart, 1977).

It is reported by Nebech and al the synthesis and characterization of Dawson sandwich complexes [Ce(XH₂W₁₇O₆₁]²⁺ (X = P, As) (Belai, 2005) . Ostuni and al have described the synthesis of three other sandwiches type from monolacunary Dawson species K₁₆[U(α₂-P₂W₁₇O₆₁]₂]-22H₂O, K₁₆[Th(α₂-P₂W₁₇O₆₁]₂]-6H₂O and (NH₄)₁₇[Ce(α₂-P₂W₁₇O₆₁]₂]-2H₂O(Ostuni, 2003)

The present study concerns the synthesis and spectroscopic characterization (IR, UV, RMN³¹P) of the Dawson-derived sandwich-type complexes Na₁₈[(α₂P₂W₁₇O₆₁]₂]_M, nH₂O (M = Co²⁺, Ni²⁺, Cu²⁺). They have been obtained by the dissolution of solid Na₁₀[α₂P₂W₁₇O₆₁].20H₂O in an aqueous solution at pH ≤3 with metallic ions. An electrochemical characterization was carried out by cyclic voltammetry in order to study the redox comportment of the obtained compounds and confirm their structure.

EXPERIMENTAL

Synthesis of heteropolyanions

The heteropolyanion K₆P₂W₁₈O₆₂ et α₂-K₁₀P₂W₁₇O₆₁ were synthesized according to the published procedures (Massart, 1977; Contant, 1977) and their purity was confirmed by infrared spectroscopy and 31P NMR spectroscopy.

Na₁₈[α₂P₂W₁₇O₆₁]₂M, nH₂O: 1.25 mmole of M(NO₃)₂.nH₂O (M = Co²⁺, Ni²⁺, Cu²⁺) was dissolved in 50 ml of 1M NaCl solution. Solid α₂-K₁₀P₂W₁₇O₆₁ (2.5 mmole) was then added in small portions and dissolved under vigorous stirring. The solution was heated between 40 and 60 °C until complete dissolution of α₂-K₁₀P₂W₁₇O₆₁, then filtered hot and the filtrate was left to stand in air for about two week at room temperature. A crystalline powder was recuperated for each compound.

M = Co²⁺; n = 17; IR (KBr pellet, cm⁻¹): 1083(s), 1065(w), 1013 (w), 939(s), 912(s), 31PNMR: δ =13.004 ppm. Anal.Calcd.(found): P 1.36(1.33); W 68.66(67); Co 0.65(0.58); Na 4.54(4.30)

M = Ni²⁺; n = 9; IR (KBr pellet, cm⁻¹): 1084(s), 1013(w), 959(s), 914(s). 31PNMR: δ =-12.991 ppm. Anal. Calcd.(found): P 1.38(1.31); W 68.91(68.10); Ni 0.66(0.60); Na 4.63(4.49).

M = Cu²⁺; n = 15; IR (KBr pellet, cm⁻¹): 1084(s), 1063(w), 1016(w), 941(s), 918(s). 31P NMR: δ =-12.985ppm. Anal. Calcd.(found): P
Spectroscopic characterization

The IR spectra were recorded on KBr pellets using a spectrophotometer Shimadzu FTIR-8400s. The UV-Visible spectra were recorded on spectrophotometer Jenway 6705 UV/Vis in a quartz tank.

31P NMR spectra were recorded on Bruker 400 MHz Ascend. The 31P shifts were measured for 10^{-3}M solution of polyoxion in D$_2$O solution and were referenced to H$_3$PO$_4$ 85%.

Cyclic voltammetry analysis

The electrochemical study was carried out by a cyclic voltammetry on PGZ 100 voltamlab controlled by voltamaster 4 software. The experiments were performed in a cell of 20 ml at pH 3 (0.5 M Na$_2$SO$_4$ + H$_2$SO$_4$) with a concentration 4x10^{-3} of polyoxometallate. The working electrode used was glassy carbon (GC), a saturated calomel reference electrode as reference electrode (SCE) and a platinum wire is used as auxiliary electrode. All experimental solutions were de aerated thoroughly by bubbling pure N$_2$ through the solutions for 10 min. all cyclic voltammograms were recorded at a scan rate of 20 mVs$^{-1}$. All experiments were performed at room temperature.

RESULTS AND DISCUSSION

The precursor tungstophosphate $^{\alpha_2}K_{10}P_2W_{17}O_{61}$, 20H$_2$O, is monolacunary specie of Dawson $^{K_6}P_2W_{18}O_{62}$ anion from which one of the cap tungsten octaedra has been removed. The Na$_{16}$[(P$_2$W$_17$O$_{61}$)$_2$M],nH$_2$O compounds were obtained in acid medium of NaCl 1 M, HCl 0.1M solution at pH ≤3 with stoechiometric amount (1:2) of M$^{2+}$ ions (M = Co, Ni, Cu) and $^{\alpha_2}K_{10}P_2W_{17}O_{61}$, 20H$_2$O at about 60°C; while the$^{[\alpha_2P_2W_{17}O_{61}]^{18-}}$ compounds were synthesized from 1:1 ratio of M$^{2+}$ and $^{\alpha_2}K_{10}P_2W_{17}O_{61}$, 20H$_2$O at pH between 6 and 7 and ambient temperature(Lyon, 1991). The metallic cations of Na$_{16}$[(P$_2$W$_17$O$_{61}$)$_2$M],nH$_2$O are incorporate between two monolacunary species. The compounds belong to the known class of sandwich type structures.

The UV electronic spectra of Cu- and Co-derivatives in aqueous solution (Fig.1) are nearly similar and exhibit two characteristic bands at 210 and 273 nm. The spectrum of Ni-derivative exhibits a slight shift of the first band to 215 nm.

Fig. 1: UV spectra of spectra of $^{\alpha_2P_2W_{17}}$ (1), Cu- (2), Co- (3) and Ni-derivatives (4) species

The first absorption bands of polyoxometallates could be assigned to $\pi\tau$ electronic transition in W=O bond and the second band could be assigned to $\delta\tau$ electronic transition in W-O-W bonds (Rusu, 1999). In the obtained polyoxometallates these bands are shifted in comparison with the ligand frequencies because of the coordination with the metallic ions (Co$^{2+}$, Ni$^{2+}$, Cu$^{2+}$).

The IR spectrum Dawson compound $^{K_6}P_2W_{18}O_{62}$ is characterized by the elongation of P-O bands at 1100 cm$^{-1}$ and W-O terminal and inter- and intra-W-O-W bands at 960, 910, and 780 cm$^{-1}$, respectively (Rocchiccioli – Deltcheff, 1979, 1976). The spectrum of lacunary substrate $^{\alpha_2}K_{10}P_2W_{17}O_{61}$ shows three bands between 1100 and 1010 cm$^{-1}$ assigned to stretching of P-O.

The IR spectra of the three compounds present the characteristic peaks of Dawson structure (Table 1). The intensities bands at 1058.85 cm$^{-1}$ in Cu-derivative and at 1064.63 cm$^{-1}$ for Co-derivative characteristic of a lacuna in the structure decreases and disparate for Ni-derivative compared to the spectrum of $^{\alpha_2K_{10}P_2W_{17}O_{61}}$ precursor.
Table 1. Selected I.R. data (cm$^{-1}$) of Na$_{18}$
[(α_2P$_2$W$_{17}$O$_{61}$)$_2$M]nH$_2$O; M = Cu, Co, Ni

<table>
<thead>
<tr>
<th>POM</th>
<th>$\nu_{as}(P-O_{\alpha})$</th>
<th>$\nu_{as}(W-O_{\alpha})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_2K${10}$P2W${17}$O${61}$</td>
<td>1086</td>
<td>959</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[((α_2P2W${17}$O$_{61}$)$_2$Cu]$^{18-}$</td>
<td>1084</td>
<td>941</td>
</tr>
<tr>
<td></td>
<td>1059</td>
<td>918</td>
</tr>
<tr>
<td></td>
<td>1016</td>
<td></td>
</tr>
<tr>
<td>[((α_2P2W${17}$O$_{61}$)$_2$Co]$^{18-}$</td>
<td>1083</td>
<td>939</td>
</tr>
<tr>
<td></td>
<td>1065</td>
<td>912</td>
</tr>
<tr>
<td></td>
<td>1013</td>
<td></td>
</tr>
<tr>
<td>[((α_2P2W${17}$O$_{61}$)$_2$Ni]$^{18-}$</td>
<td>1084</td>
<td>959</td>
</tr>
<tr>
<td></td>
<td>1013</td>
<td>914</td>
</tr>
</tbody>
</table>

The IR spectra of Cu and Co derivatives are nearly identical, indicating a structural similarity. In the IR spectrum of Ni derivative no band is present at around 1060 cm$^{-1}$. This indicates that both PO$_4$ groups in PW$_9$ and PW$_8$ moieties are becoming nearly equivalent, probably because of the $d\,(d\epsilon & d\gamma)$ orbital symmetry of Ni$^{2+}$.

31PNMR spectroscopy is particularly suitable for checking the purity of polyoxometallates. 31PNMR spectrum of precursor specie shows two lines at -7 and -13.6 ppm (Massart, 1977). This is compatible with two non equivalents phosphorus atoms. The NMR study of paramagnetic elements containing POMs reveals that the chemical shift of the P atom noted P(2) far from the paramagnetic element was practically unaffected by the presence of this element, while P(1) resonance is shifted radically and broadened. This shift and broadening might be important enough to make the corresponding signal hardly or not at all observed (Contant, 2000; Belghiche, 2002). In the same way, the spectra of Ni and Cu derivatives (Fig. 2b, 2a) show one line at -12.991 and -12.985 ppm respectively. The spectrum of Co compound shows one line at -13.004 ppm with traces (<9%) at -24.04 ppm (Fig. 2c).

Characterization by cyclic voltammetry access to the redox peak of different metallic elements present in the structure (Keita, 2007). The study was effected at pH 3. The voltammograms of compounds P$_2$W$_{17}$O$_{61}^{-10}$, P$_2$W$_{17}$CuO$_{61}^{-8}$ and [Cu(α_2P$_2$W$_{17}$O$_{61}$)$_2$]$^{18-}$ (Fig.3a) are clearly different, which reveals the structure difference of the three compounds.

A pair of redox process is observed for Cu-compound at potential of -0.192V for oxidation and 0.013V for reduction. The anodic peak should correspond to the reoxidation of Cu0 to
Cu$^{2+}$, the same shape of oxydoreduction wave of copper was observed in Dawson polyoxometallates and similar results have reported elsewhere for sandwich compound [Cu$_4$(OH)$_2$(P$_2$W$_{15}$O$_{56}$)$_2$]$^{18-}$ (Rhulmann, 2002).

The voltammograms of [M(α-P$_2$W$_{17}$O$_{61}$)$_2$]$^{18-}$, M = Co$^{2+}$, Ni$^{2+}$. (Fig. 3b, 3c) are different from precursor’s voltammogram, with less redox systems. The insertion of metallic ions in the structure affected the number and the potential of different redox systems. The intensities of waves in precursor or synthesized compounds are almost close. The oxydoreduction of Co$^{2+}$ or Ni$^{2+}$ ions, not observed at explored potential (Rhulmann, 2002).

CONCLUSION

Three new compounds Na$_{18}$[M(α-P$_2$W$_{17}$O$_{61}$)$_2$] (M = Co, Ni, Cu) were obtained from monolacunary Dawson polyoxometallate specie in acidic medium at about 60°C. The UV spectra for the three compounds are nearly equivalent and exhibit the specific absorption of Dawson polyoxometallates. The IR spectra show the similarity of Co- and Cu-derivatives with the decreases of the lacuna band. This band disparate for Ni compound. The insertion of Ni metallic ions seems to have saturated the gap with respect to the results obtained at IR spectroscopy. The purity of compounds was checked by 31PNMR. The apparition of one line at 31PNMR spectra is due to the insertion of paramagnetic elements in the structure. The electrochemical study reveals the difference of precursor from compounds; substrate: metal (1:1) and substrate: metal (2:1).

Acknowledgement

Cyclic voltammetry was made at Electrochemical Laboratory at the Farhat Abbes Seta University. NMR measurements were performed at Organométalliques et Matériaux Moléculaires, UMR 6226 CNRS-Université de Rennes 1, Sciences Chimiques de Rennes.

REFERENCES:

of Keggin's type as potential antitumour agents; Yugoslav Med Biohems 23(1) 25-30.

